1
JEE Main 2023 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$5 f(x)+4 f\left(\frac{1}{x}\right)=\frac{1}{x}+3, x > 0$$. Then $$18 \int_\limits{1}^{2} f(x) d x$$ is equal to :

A
$$10 \log _{\mathrm{e}} 2+6$$
B
$$5 \log _{e} 2-3$$
C
$$10 \log _{\mathrm{e}} 2-6$$
D
$$5 \log _{\mathrm{e}} 2+3$$
2
JEE Main 2023 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of the integral

$$\int\limits_{ - {\pi \over 4}}^{{\pi \over 4}} {{{x + {\pi \over 4}} \over {2 - \cos 2x}}dx} $$ is :

A
$${{{\pi ^2}} \over {6\sqrt 3 }}$$
B
$${{{\pi ^2}} \over 6}$$
C
$${{{\pi ^2}} \over {3\sqrt 3 }}$$
D
$${{{\pi ^2}} \over {12\sqrt 3 }}$$
3
JEE Main 2023 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

$$\mathop {\lim }\limits_{n \to \infty } \left[ {{1 \over {1 + n}} + {1 \over {2 + n}} + {1 \over {3 + n}}\, + \,...\, + \,{1 \over {2n}}} \right]$$ is equal to

A
0
B
$${\log _e}2$$
C
$${\log _e}\left( {{2 \over 3}} \right)$$
D
$${\log _e}\left( {{3 \over 2}} \right)$$
4
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $\alpha>0$. If $\int\limits_0^\alpha \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} \mathrm{~d} x=\frac{16+20 \sqrt{2}}{15}$, then $\alpha$ is equal to :
A
4
B
2
C
$2 \sqrt{2}$
D
$\sqrt{2}$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12