1
JEE Main 2023 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1

The value of the integral

$$\int\limits_{ - {\pi \over 4}}^{{\pi \over 4}} {{{x + {\pi \over 4}} \over {2 - \cos 2x}}dx}$$ is :

A
$${{{\pi ^2}} \over {6\sqrt 3 }}$$
B
$${{{\pi ^2}} \over 6}$$
C
$${{{\pi ^2}} \over {3\sqrt 3 }}$$
D
$${{{\pi ^2}} \over {12\sqrt 3 }}$$
2
JEE Main 2023 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus

$$\mathop {\lim }\limits_{n \to \infty } \left[ {{1 \over {1 + n}} + {1 \over {2 + n}} + {1 \over {3 + n}}\, + \,...\, + \,{1 \over {2n}}} \right]$$ is equal to

A
0
B
$${\log _e}2$$
C
$${\log _e}\left( {{2 \over 3}} \right)$$
D
$${\log _e}\left( {{3 \over 2}} \right)$$
3
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Let $\alpha>0$. If $\int\limits_0^\alpha \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} \mathrm{~d} x=\frac{16+20 \sqrt{2}}{15}$, then $\alpha$ is equal to :
A
4
B
2
C
$2 \sqrt{2}$
D
$\sqrt{2}$
4
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
If $\phi(x)=\frac{1}{\sqrt{x}} \int\limits_{\frac{\pi}{4}}^x\left(4 \sqrt{2} \sin t-3 \phi^{\prime}(t)\right) d t, x>0$,

then $\emptyset^{\prime}\left(\frac{\pi}{4}\right)$ is equal to :
A
$\frac{4}{6+\sqrt{\pi}}$
B
$\frac{4}{6-\sqrt{\pi}}$
C
$\frac{8}{\sqrt{\pi}}$
D
$\frac{8}{6+\sqrt{\pi}}$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12
© ExamGOAL 2024