Parabola · Mathematics · JEE Main
Numerical
Let $y^2=12 x$ be the parabola and $S$ be its focus. Let $P Q$ be a focal chord of the parabola such that $(S P)(S Q)=\frac{147}{4}$. Let $C$ be the circle described taking $P Q$ as a diameter. If the equation of a circle $C$ is $64 x^2+64 y^2-\alpha x-64 \sqrt{3} y=\beta$, then $\beta-\alpha$ is equal to $\qquad$ .
Let $A$ and $B$ be the two points of intersection of the line $y+5=0$ and the mirror image of the parabola $y^2=4 x$ with respect to the line $x+y+4=0$. If $d$ denotes the distance between $A$ and $B$, and a denotes the area of $\triangle S A B$, where $S$ is the focus of the parabola $y^2=4 x$, then the value of $(a+d)$ is __________.
The focus of the parabola $y^2=4 x+16$ is the centre of the circle $C$ of radius 5 . If the values of $\lambda$, for which C passes through the point of intersection of the lines $3 x-y=0$ and $x+\lambda y=4$, are $\lambda_1$ and $\lambda_2, \lambda_1<\lambda_2$, then $12 \lambda_1+29 \lambda_2$ is equal to ________ .
Let $$A, B$$ and $$C$$ be three points on the parabola $$y^2=6 x$$ and let the line segment $$A B$$ meet the line $$L$$ through $$C$$ parallel to the $$x$$-axis at the point $$D$$. Let $$M$$ and $$N$$ respectively be the feet of the perpendiculars from $$A$$ and $$B$$ on $$L$$. Then $$\left(\frac{A M \cdot B N}{C D}\right)^2$$ is equal to __________.
Consider the circle $$C: x^2+y^2=4$$ and the parabola $$P: y^2=8 x$$. If the set of all values of $$\alpha$$, for which three chords of the circle $$C$$ on three distinct lines passing through the point $$(\alpha, 0)$$ are bisected by the parabola $$P$$ is the interval $$(p, q)$$, then $$(2 q-p)^2$$ is equal to __________.
Let a conic $$C$$ pass through the point $$(4,-2)$$ and $$P(x, y), x \geq 3$$, be any point on $$C$$. Let the slope of the line touching the conic $$C$$ only at a single point $$P$$ be half the slope of the line joining the points $$P$$ and $$(3,-5)$$. If the focal distance of the point $$(7,1)$$ on $$C$$ is $$d$$, then $$12 d$$ equals ________.
Let $$L_1, L_2$$ be the lines passing through the point $$P(0,1)$$ and touching the parabola $$9 x^2+12 x+18 y-14=0$$. Let $$Q$$ and $$R$$ be the points on the lines $$L_1$$ and $$L_2$$ such that the $$\triangle P Q R$$ is an isosceles triangle with base $$Q R$$. If the slopes of the lines $$Q R$$ are $$m_1$$ and $$m_2$$, then $$16\left(m_1^2+m_2^2\right)$$ is equal to __________.
Let a line perpendicular to the line $$2 x-y=10$$ touch the parabola $$y^2=4(x-9)$$ at the point P. The distance of the point P from the centre of the circle $$x^2+y^2-14 x-8 y+56=0$$ is __________.
Suppose $$\mathrm{AB}$$ is a focal chord of the parabola $$y^2=12 x$$ of length $$l$$ and slope $$\mathrm{m}<\sqrt{3}$$. If the distance of the chord $$\mathrm{AB}$$ from the origin is $$\mathrm{d}$$, then $$l \mathrm{~d}^2$$ is equal to _________.
Let the length of the focal chord PQ of the parabola $$y^2=12 x$$ be 15 units. If the distance of $$\mathrm{PQ}$$ from the origin is $$\mathrm{p}$$, then $$10 \mathrm{p}^2$$ is equal to __________.
Let $$P(\alpha, \beta)$$ be a point on the parabola $$y^2=4 x$$. If $$P$$ also lies on the chord of the parabola $$x^2=8 y$$ whose mid point is $$\left(1, \frac{5}{4}\right)$$, then $$(\alpha-28)(\beta-8)$$ is equal to _________.
Let the tangent to the parabola $$\mathrm{y}^{2}=12 \mathrm{x}$$ at the point $$(3, \alpha)$$ be perpendicular to the line $$2 x+2 y=3$$. Then the square of distance of the point $$(6,-4)$$ from the normal to the hyperbola $$\alpha^{2} x^{2}-9 y^{2}=9 \alpha^{2}$$ at its point $$(\alpha-1, \alpha+2)$$ is equal to _________.
Let a common tangent to the curves $${y^2} = 4x$$ and $${(x - 4)^2} + {y^2} = 16$$ touch the curves at the points P and Q. Then $${(PQ)^2}$$ is equal to __________.
The ordinates of the points P and $$\mathrm{Q}$$ on the parabola with focus $$(3,0)$$ and directrix $$x=-3$$ are in the ratio $$3: 1$$. If $$\mathrm{R}(\alpha, \beta)$$ is the point of intersection of the tangents to the parabola at $$\mathrm{P}$$ and $$\mathrm{Q}$$, then $$\frac{\beta^{2}}{\alpha}$$ is equal to _______________.
Let the tangent to the curve $$x^{2}+2 x-4 y+9=0$$ at the point $$\mathrm{P}(1,3)$$ on it meet the $$y$$-axis at $$\mathrm{A}$$. Let the line passing through $$\mathrm{P}$$ and parallel to the line $$x-3 y=6$$ meet the parabola $$y^{2}=4 x$$ at $$\mathrm{B}$$. If $$\mathrm{B}$$ lies on the line $$2 x-3 y=8$$, then $$(\mathrm{AB})^{2}$$ is equal to ___________.
If the $$x$$-intercept of a focal chord of the parabola $$y^{2}=8x+4y+4$$ is 3, then the length of this chord is equal to ____________.
A triangle is formed by the tangents at the point (2, 2) on the curves $$y^2=2x$$ and $$x^2+y^2=4x$$, and the line $$x+y+2=0$$. If $$r$$ is the radius of its circumcircle, then $$r^2$$ is equal to ___________.
Two tangent lines $$l_{1}$$ and $$l_{2}$$ are drawn from the point $$(2,0)$$ to the parabola $$2 \mathrm{y}^{2}=-x$$. If the lines $$l_{1}$$ and $$l_{2}$$ are also tangent to the circle $$(x-5)^{2}+y^{2}=r$$, then 17r is equal to ___________.
The sum of diameters of the circles that touch (i) the parabola $$75 x^{2}=64(5 y-3)$$ at the point $$\left(\frac{8}{5}, \frac{6}{5}\right)$$ and (ii) the $$y$$-axis, is equal to ______________.
Let PQ be a focal chord of length 6.25 units of the parabola y2 = 4x. If O is the vertex of the parabola, then 10 times the area (in sq. units) of $$\Delta$$POQ is equal to ___________.
A circle of radius 2 unit passes through the vertex and the focus of the parabola y2 = 2x and touches the parabola $$y = {\left( {x - {1 \over 4}} \right)^2} + \alpha $$, where $$\alpha$$ > 0. Then (4$$\alpha$$ $$-$$ 8)2 is equal to ______________.
Let the common tangents to the curves $$4({x^2} + {y^2}) = 9$$ and $${y^2} = 4x$$ intersect at the point Q. Let an ellipse, centered at the origin O, has lengths of semi-minor and semi-major axes equal to OQ and 6, respectively. If e and l respectively denote the eccentricity and the length of the latus rectum of this ellipse, then $${l \over {{e^2}}}$$ is equal to ______________.
Let P1 be a parabola with vertex (3, 2) and focus (4, 4) and P2 be its mirror image with respect to the line x + 2y = 6. Then the directrix of P2 is x + 2y = ____________.
MCQ (Single Correct Answer)
Two parabolas have the same focus (4, 3) and their directrices are the x-axis and the y-axis, respectively. If these parabolas intersect at the points A and B, then (AB)2 is equal to :
Let ABCD be a trapezium whose vertices lie on the parabola $\mathrm{y}^2=4 \mathrm{x}$. Let the sides AD and BC of the trapezium be parallel to $y$-axis. If the diagonal AC is of length $\frac{25}{4}$ and it passes through the point $(1,0)$, then the area of $A B C D$ is
If the equation of the parabola with vertex $\mathrm{V}\left(\frac{3}{2}, 3\right)$ and the directrix $x+2 y=0$ is $\alpha x^2+\beta y^2-\gamma x y-30 x-60 y+225=0$, then $\alpha+\beta+\gamma$ is equal to :
Let the shortest distance from $(a, 0), a>0$, to the parabola $y^2=4 x$ be 4 . Then the equation of the circle passing through the point $(a, 0)$ and the focus of the parabola, and having its centre on the axis of the parabola is :
If the line $3 x-2 y+12=0$ intersects the parabola $4 y=3 x^2$ at the points $A$ and $B$, then at the vertex of the parabola, the line segment AB subtends an angle equal to
Let $\mathrm{P}(4,4 \sqrt{3})$ be a point on the parabola $y^2=4 \mathrm{a} x$ and PQ be a focal chord of the parabola. If M and N are the foot of perpendiculars drawn from P and Q respectively on the directrix of the parabola, then the area of the quadrilateral PQMN is equal to :
Let the parabola $y=x^2+\mathrm{p} x-3$, meet the coordinate axes at the points $\mathrm{P}, \mathrm{Q}$ and R . If the circle C with centre at $(-1,-1)$ passes through the points $P, Q$ and $R$, then the area of $\triangle P Q R$ is :
Let $$C$$ be the circle of minimum area touching the parabola $$y=6-x^2$$ and the lines $$y=\sqrt{3}|x|$$. Then, which one of the following points lies on the circle $$C$$ ?
Let $$P Q$$ be a chord of the parabola $$y^2=12 x$$ and the midpoint of $$P Q$$ be at $$(4,1)$$. Then, which of the following point lies on the line passing through the points $$\mathrm{P}$$ and $$\mathrm{Q}$$ ?
Let $$\mathrm{PQ}$$ be a focal chord of the parabola $$y^{2}=36 x$$ of length 100 , making an acute angle with the positive $$x$$-axis. Let the ordinate of $$\mathrm{P}$$ be positive and $$\mathrm{M}$$ be the point on the line segment PQ such that PM : MQ = 3 : 1. Then which of the following points does NOT lie on the line passing through M and perpendicular to the line $$\mathrm{PQ}$$?
Let $$\mathrm{A}(0,1), \mathrm{B}(1,1)$$ and $$\mathrm{C}(1,0)$$ be the mid-points of the sides of a triangle with incentre at the point $$\mathrm{D}$$. If the focus of the parabola $$y^{2}=4 \mathrm{ax}$$ passing through $$\mathrm{D}$$ is $$(\alpha+\beta \sqrt{2}, 0)$$, where $$\alpha$$ and $$\beta$$ are rational numbers, then $$\frac{\alpha}{\beta^{2}}$$ is equal to :
Let $$R$$ be the focus of the parabola $$y^{2}=20 x$$ and the line $$y=m x+c$$ intersect the parabola at two points $$P$$ and $$Q$$.
Let the point $$G(10,10)$$ be the centroid of the triangle $$P Q R$$. If $$c-m=6$$, then $$(P Q)^{2}$$ is :
Let $$\mathrm{y}=f(x)$$ represent a parabola with focus $$\left(-\frac{1}{2}, 0\right)$$ and directrix $$y=-\frac{1}{2}$$. Then
$$S=\left\{x \in \mathbb{R}: \tan ^{-1}(\sqrt{f(x)})+\sin ^{-1}(\sqrt{f(x)+1})=\frac{\pi}{2}\right\}$$ :
If $$\mathrm{P}(\mathrm{h}, \mathrm{k})$$ be a point on the parabola $$x=4 y^{2}$$, which is nearest to the point $$\mathrm{Q}(0,33)$$, then the distance of $$\mathrm{P}$$ from the directrix of the parabola $$\quad y^{2}=4(x+y)$$ is equal to :
If the tangent at a point P on the parabola $$y^2=3x$$ is parallel to the line $$x+2y=1$$ and the tangents at the points Q and R on the ellipse $$\frac{x^2}{4}+\frac{y^2}{1}=1$$ are perpendicular to the line $$x-y=2$$, then the area of the triangle PQR is :
The equations of two sides of a variable triangle are $$x=0$$ and $$y=3$$, and its third side is a tangent to the parabola $$y^2=6x$$. The locus of its circumcentre is :
The distance of the point $$(6,-2\sqrt2)$$ from the common tangent $$\mathrm{y=mx+c,m > 0}$$, of the curves $$x=2y^2$$ and $$x=1+y^2$$ is :
The equations of the sides AB and AC of a triangle ABC are $$(\lambda+1)x+\lambda y=4$$ and $$\lambda x+(1-\lambda)y+\lambda=0$$ respectively. Its vertex A is on the y-axis and its orthocentre is (1, 2). The length of the tangent from the point C to the part of the parabola $$y^2=6x$$ in the first quadrant is :
Let a tangent to the curve $$\mathrm{y^2=24x}$$ meet the curve $$xy = 2$$ at the points A and B. Then the mid points of such line segments AB lie on a parabola with the :
Let the focal chord of the parabola $$\mathrm{P}: y^{2}=4 x$$ along the line $$\mathrm{L}: y=\mathrm{m} x+\mathrm{c}, \mathrm{m}>0$$ meet the parabola at the points M and N. Let the line L be a tangent to the hyperbola $$\mathrm{H}: x^{2}-y^{2}=4$$. If O is the vertex of P and F is the focus of H on the positive x-axis, then the area of the quadrilateral OMFN is :
If the tangents drawn at the points $$\mathrm{P}$$ and $$\mathrm{Q}$$ on the parabola $$y^{2}=2 x-3$$ intersect at the point $$R(0,1)$$, then the orthocentre of the triangle $$P Q R$$ is :
If the length of the latus rectum of a parabola, whose focus is $$(a, a)$$ and the tangent at its vertex is $$x+y=a$$, is 16, then $$|a|$$ is equal to :
Let $$P(a, b)$$ be a point on the parabola $$y^{2}=8 x$$ such that the tangent at $$P$$ passes through the centre of the circle $$x^{2}+y^{2}-10 x-14 y+65=0$$. Let $$A$$ be the product of all possible values of $$a$$ and $$B$$ be the product of all possible values of $$b$$. Then the value of $$A+B$$ is equal to :
Let $$\mathrm{P}$$ and $$\mathrm{Q}$$ be any points on the curves $$(x-1)^{2}+(y+1)^{2}=1$$ and $$y=x^{2}$$, respectively. The distance between $$P$$ and $$Q$$ is minimum for some value of the abscissa of $$P$$ in the interval :
The equation of a common tangent to the parabolas $$y=x^{2}$$ and $$y=-(x-2)^{2}$$ is
The tangents at the points $$A(1,3)$$ and $$B(1,-1)$$ on the parabola $$y^{2}-2 x-2 y=1$$ meet at the point $$P$$. Then the area (in unit $${ }^{2}$$ ) of the triangle $$P A B$$ is :
Let P : y2 = 4ax, a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of $${\pi \over 4}$$ with the line y = 3x + 5 touch the parabola P at A and B. Then the value of a for which A, B and S are collinear is :
Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of $${\pi \over 2}$$ at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse $$E:{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, $${a^2} > {b^2}$$. If e is the eccentricity of the ellipse E, then the value of $${1 \over {{e^2}}}$$ is equal to :
If vertex of a parabola is (2, $$-$$1) and the equation of its directrix is 4x $$-$$ 3y = 21, then the length of its latus rectum is :
If the equation of the parabola, whose vertex is at (5, 4) and the directrix is $$3x + y - 29 = 0$$, is $${x^2} + a{y^2} + bxy + cx + dy + k = 0$$, then $$a + b + c + d + k$$ is equal to :
Let the normal at the point on the parabola y2 = 6x pass through the point (5, $$-$$8). If the tangent at P to the parabola intersects its directrix at the point Q, then the ordinate of the point Q is :
If the line $$y = 4 + kx,\,k > 0$$, is the tangent to the parabola $$y = x - {x^2}$$ at the point P and V is the vertex of the parabola, then the slope of the line through P and V is :
If $$y = {m_1}x + {c_1}$$ and $$y = {m_2}x + {c_2}$$, $${m_1} \ne {m_2}$$ are two common tangents of circle $${x^2} + {y^2} = 2$$ and parabola y2 = x, then the value of $$8|{m_1}{m_2}|$$ is equal to :
Let $$x = 2t$$, $$y = {{{t^2}} \over 3}$$ be a conic. Let S be the focus and B be the point on the axis of the conic such that $$SA \bot BA$$, where A is any point on the conic. If k is the ordinate of the centroid of the $$\Delta$$SAB, then $$\mathop {\lim }\limits_{t \to 1} k$$ is equal to :
A particle is moving in the xy-plane along a curve C passing through the point (3, 3). The tangent to the curve C at the point P meets the x-axis at Q. If the y-axis bisects the segment PQ, then C is a parabola with :
Let x2 + y2 + Ax + By + C = 0 be a circle passing through (0, 6) and touching the parabola y = x2 at (2, 4). Then A + C is equal to ___________.
parabola y2 = 16(x $$-$$ 3) are at right angles, then the locus of point P is :
y = x2 at the point (2, 4) is :
and L2 be a tangent to the parabola y2 = 8(x + 2)
such that L1 and L2 intersect at right angles. Then L1 and L2 meet on the straight line :
y2 = 4x and x2 = 4y also touches the circle, x2 + y2 = c2,
then c is equal to :
Statement-1 : An equation of a common tangent to these curves is $$y = x + \sqrt 5 $$.
Statement-2 : If the line, $$y = mx + {{\sqrt 5 } \over m}\left( {m \ne 0} \right)$$ is their common tangent, then $$m$$ satiesfies $${m^4} - 3{m^2} + 2 = 0$$.
$$y = {{{a^3}{x^2}} \over 3} + {{{a^2}x} \over 2} - 2a$$ is :