1
JEE Main 2019 (Online) 8th April Morning Slot
+4
-1
If $$f(x) = {{2 - x\cos x} \over {2 + x\cos x}}$$ and g(x) = logex, (x > 0) then the value of integral

$$\int\limits_{ - {\pi \over 4}}^{{\pi \over 4}} {g\left( {f\left( x \right)} \right)dx{\rm{ }}}$$ is
A
loge3
B
loge2
C
loge1
D
logee
2
JEE Main 2019 (Online) 12th January Evening Slot
+4
-1
The integral $$\int\limits_1^e {\left\{ {{{\left( {{x \over e}} \right)}^{2x}} - {{\left( {{e \over x}} \right)}^x}} \right\}} \,$$ loge x dx is equal to :
A
$$- {1 \over 2} + {1 \over e} - {1 \over {2{e^2}}}$$
B
$${3 \over 2} - e - {1 \over {2{e^2}}}$$
C
$${1 \over 2} - e - {1 \over {{e^2}}}$$
D
$${3 \over 2} - {1 \over e} - {1 \over {2{x^2}}}$$
3
JEE Main 2019 (Online) 12th January Evening Slot
+4
-1
Out of Syllabus
$$\mathop {\lim }\limits_{x \to \infty } \left( {{n \over {{n^2} + {1^2}}} + {n \over {{n^2} + {2^2}}} + {n \over {{n^2} + {3^2}}} + ..... + {1 \over {5n}}} \right)$$ is equal to :
A
tan–1 (2)
B
tan–1 (3)
C
$${\pi \over 4}$$
D
$${\pi \over 2}$$
4
JEE Main 2019 (Online) 12th January Morning Slot
+4
-1
Let f and g be continuous functions on [0, a] such that f(x) = f(a – x) and g(x) + g(a – x) = 4, then $$\int\limits_0^a \,$$f(x) g(x) dx is equal to :
A
4$$\int\limits_0^a \,$$f(x)dx
B
$$-$$ 3$$\int\limits_0^a \,$$f(x)dx
C
$$\int\limits_0^a \,$$f(x)dx
D
2$$\int\limits_0^a \,$$f(x)dx
EXAM MAP
Medical
NEET
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12