1
JEE Main 2021 (Online) 26th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of $$\int\limits_{ - \pi /2}^{\pi /2} {{{{{\cos }^2}x} \over {1 + {3^x}}}} dx$$ is :
A
$$2\pi $$
B
$${\pi \over 2}$$
C
$$4\pi $$
D
$${\pi \over 4}$$
2
JEE Main 2021 (Online) 26th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of $$\sum\limits_{n = 1}^{100} {\int\limits_{n - 1}^n {{e^{x - [x]}}dx} } $$, where [ x ] is the greatest integer $$ \le $$ x, is :
A
100e
B
100(e $$-$$ 1)
C
100(1 + e)
D
100(1 $$-$$ e)
3
JEE Main 2021 (Online) 25th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $${I_n} = \int\limits_{{\pi \over 4}}^{{\pi \over 2}} {{{\cot }^n}x\,dx} $$, then :
A
$${1 \over {{I_2} + {I_4}}},{1 \over {{I_3} + {I_5}}},{1 \over {{I_4} + {I_6}}}$$ are in A.P.
B
I2 + I4, I3 + I5, I4 + I6 are in A.P.
C
$${1 \over {{I_2} + {I_4}}},{1 \over {{I_3} + {I_5}}},{1 \over {{I_4} + {I_6}}}$$ are in G.P.
D
I2 + I4, (I3 + I5)2, I4 + I6 are in G.P.
4
JEE Main 2021 (Online) 25th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
$$\mathop {\lim }\limits_{n \to \infty } \left[ {{1 \over n} + {n \over {{{(n + 1)}^2}}} + {n \over {{{(n + 2)}^2}}} + ........ + {n \over {{{(2n + 1)}^2}}}} \right]$$ is equal to :
A
$${{1 \over 2}}$$
B
$${{1 \over 3}}$$
C
1
D
$${{1 \over 4}}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12