1
JEE Main 2023 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\mathop {\lim }\limits_{n \to \infty } \left[ {{1 \over {1 + n}} + {1 \over {2 + n}} + {1 \over {3 + n}}\, + \,...\, + \,{1 \over {2n}}} \right]$$ is equal to

A
0
B
$${\log _e}2$$
C
$${\log _e}\left( {{2 \over 3}} \right)$$
D
$${\log _e}\left( {{3 \over 2}} \right)$$
2
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $\alpha>0$. If $\int\limits_0^\alpha \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} \mathrm{~d} x=\frac{16+20 \sqrt{2}}{15}$, then $\alpha$ is equal to :
A
4
B
2
C
$2 \sqrt{2}$
D
$\sqrt{2}$
3
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $\phi(x)=\frac{1}{\sqrt{x}} \int\limits_{\frac{\pi}{4}}^x\left(4 \sqrt{2} \sin t-3 \phi^{\prime}(t)\right) d t, x>0$,

then $\emptyset^{\prime}\left(\frac{\pi}{4}\right)$ is equal to :
A
$\frac{4}{6+\sqrt{\pi}}$
B
$\frac{4}{6-\sqrt{\pi}}$
C
$\frac{8}{\sqrt{\pi}}$
D
$\frac{8}{6+\sqrt{\pi}}$
4
JEE Main 2023 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let a differentiable function $$f$$ satisfy $$f(x)+\int_\limits{3}^{x} \frac{f(t)}{t} d t=\sqrt{x+1}, x \geq 3$$. Then $$12 f(8)$$ is equal to :

A
19
B
34
C
17
D
1
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSAT
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN