Definite Integration · Mathematics · JEE Main

Start Practice

MCQ (Single Correct Answer)

JEE Main 2024 (Online) 9th April Evening Shift
The integral $$\int_\limits{1 / 4}^{3 / 4} \cos \left(2 \cot ^{-1} \sqrt{\frac{1-x}{1+x}}\right) d x$$ is equal to
JEE Main 2024 (Online) 9th April Evening Shift
$$\lim _\limits{x \rightarrow \frac{\pi}{2}}\left(\frac{\int_{x^3}^{(\pi / 2)^3}\left(\sin \left(2 t^{1 / 3}\right)+\cos \left(t^{1 / 3}\right)\right)...
JEE Main 2024 (Online) 9th April Evening Shift
The value of the integral $$\int_\limits{-1}^2 \log _e\left(x+\sqrt{x^2+1}\right) d x$$ is
JEE Main 2024 (Online) 8th April Evening Shift
Let $$\int_\limits\alpha^{\log _e 4} \frac{\mathrm{d} x}{\sqrt{\mathrm{e}^x-1}}=\frac{\pi}{6}$$. Then $$\mathrm{e}^\alpha$$ and $$\mathrm{e}^{-\alpha}...
JEE Main 2024 (Online) 8th April Morning Shift
The value of $$k \in \mathbb{N}$$ for which the integral $$I_n=\int_0^1\left(1-x^k\right)^n d x, n \in \mathbb{N}$$, satisfies $$147 I_{20}=148 I_{21}...
JEE Main 2024 (Online) 6th April Morning Shift
$$\int_\limits0^{\pi / 4} \frac{\cos ^2 x \sin ^2 x}{\left(\cos ^3 x+\sin ^3 x\right)^2} d x \text { is equal to }$$
JEE Main 2024 (Online) 5th April Evening Shift
Let $$\beta(\mathrm{m}, \mathrm{n})=\int_\limits0^1 x^{\mathrm{m}-1}(1-x)^{\mathrm{n}-1} \mathrm{~d} x, \mathrm{~m}, \mathrm{n}>0$$. If $$\int_\limits...
JEE Main 2024 (Online) 5th April Morning Shift
The integral $$\int_\limits0^{\pi / 4} \frac{136 \sin x}{3 \sin x+5 \cos x} \mathrm{~d} x$$ is equal to :
JEE Main 2024 (Online) 5th April Morning Shift
The value of $$\int_\limits{-\pi}^\pi \frac{2 y(1+\sin y)}{1+\cos ^2 y} d y$$ is :
JEE Main 2024 (Online) 4th April Evening Shift
Let $$f(x)=\int_0^x\left(t+\sin \left(1-e^t\right)\right) d t, x \in \mathbb{R}$$. Then, $$\lim _\limits{x \rightarrow 0} \frac{f(x)}{x^3}$$ is equal ...
JEE Main 2024 (Online) 4th April Evening Shift
If the value of the integral $$\int\limits_{-1}^1 \frac{\cos \alpha x}{1+3^x} d x$$ is $$\frac{2}{\pi}$$.Then, a value of $$\alpha$$ is
JEE Main 2024 (Online) 4th April Morning Shift
$$\text { Let } f(x)=\left\{\begin{array}{lr} -2, & -2 \leq x \leq 0 \\ x-2, & 0...
JEE Main 2024 (Online) 1st February Evening Shift
If $\int\limits_0^{\frac{\pi}{3}} \cos ^4 x \mathrm{~d} x=\mathrm{a} \pi+\mathrm{b} \sqrt{3}$, where $\mathrm{a}$ and $\mathrm{b}$ are rational number...
JEE Main 2024 (Online) 1st February Evening Shift
The value of $\int\limits_0^1\left(2 x^3-3 x^2-x+1\right)^{\frac{1}{3}} \mathrm{~d} x$ is equal to :
JEE Main 2024 (Online) 1st February Morning Shift
The value of the integral $\int\limits_0^{\pi / 4} \frac{x \mathrm{~d} x}{\sin ^4(2 x)+\cos ^4(2 x)}$ equals :
JEE Main 2024 (Online) 31st January Evening Shift
Let $$f, g:(0, \infty) \rightarrow \mathbb{R}$$ be two functions defined by $$f(x)=\int\limits_{-x}^x\left(|t|-t^2\right) e^{-t^2} d t$$ and $$g(x)=\i...
JEE Main 2024 (Online) 30th January Evening Shift
Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined by $$f(x)=\frac{x}{\left(1+x^4\right)^{1 / 4}}$$, and $$g(x)=f(f(f(f(x))))$$. Then,...
JEE Main 2024 (Online) 30th January Evening Shift
Let $$y=f(x)$$ be a thrice differentiable function in $$(-5,5)$$. Let the tangents to the curve $$y=f(x)$$ at $$(1, f(1))$$ and $$(3, f(3))$$ make ang...
JEE Main 2024 (Online) 30th January Evening Shift
Let $$a$$ and $$b$$ be real constants such that the function $$f$$ defined by $$f(x)=\left\{\begin{array}{ll}x^2+3 x+a & , x \leq 1 \\ b x+2 & , x>1\e...
JEE Main 2024 (Online) 30th January Evening Shift
Let $$\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$$ be defined as $$f(x)=a e^{2 x}+b e^x+c x$$. If $$f(0)=-1, f^{\prime}\left(\log _e 2\right)=21$$ ...
JEE Main 2024 (Online) 30th January Morning Shift
The value of $$\lim _\limits{n \rightarrow \infty} \sum_\limits{k=1}^n \frac{n^3}{\left(n^2+k^2\right)\left(n^2+3 k^2\right)}$$ is :
JEE Main 2024 (Online) 30th January Morning Shift
Let $$f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbf{R}$$ be a differentiable function such that $$f(0)=\frac{1}{2}$$. If the $$\lim...
JEE Main 2024 (Online) 29th January Morning Shift
$$\mathop {\lim }\limits_{x \to {\pi \over 2}} \left( {{1 \over {{{\left( {x - {\pi \over 2}} \right)}^2}}}\int\limits_{{x^3}}^{{{\left( {{\pi \ove...
JEE Main 2024 (Online) 29th January Morning Shift
If the value of the integral $$\int_\limits{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{x^2 \cos x}{1+\pi^x}+\frac{1+\sin ^2 x}{1+e^{\sin x^{2123}}}\ri...
JEE Main 2024 (Online) 27th January Evening Shift
For $$0
JEE Main 2024 (Online) 27th January Morning Shift
If $\int\limits_0^1 \frac{1}{\sqrt{3+x}+\sqrt{1+x}} \mathrm{~d} x=\mathrm{a}+\mathrm{b} \sqrt{2}+\mathrm{c} \sqrt{3}$, where $\mathrm{a}, \mathrm{b}, ...
JEE Main 2024 (Online) 27th January Morning Shift
If $(a, b)$ be the orthocentre of the triangle whose vertices are $(1,2),(2,3)$ and $(3,1)$, and $\mathrm{I}_1=\int\limits_{\mathrm{a}}^{\mathrm{b}} x...
JEE Main 2023 (Online) 15th April Morning Shift
If $\int\limits_{0}^{1} \frac{1}{\left(5+2 x-2 x^{2}\right)\left(1+e^{(2-4 x)}\right)} d x=\frac{1}{\alpha} \log _{e}\left(\frac{\alpha+1}{\beta}\righ...
JEE Main 2023 (Online) 13th April Evening Shift
The value of $${{{e^{ - {\pi \over 4}}} + \int\limits_0^{{\pi \over 4}} {{e^{ - x}}{{\tan }^{50}}xdx} } \over {\int\limits_0^{{\pi \over 4}} {{e^{ ...
JEE Main 2023 (Online) 13th April Morning Shift
Among (S1): $$\lim_\limits{n \rightarrow \infty} \frac{1}{n^{2}}(2+4+6+\ldots \ldots+2 n)=1$$ (S2) : $$\lim_\limits{n \rightarrow \infty} \frac{1}{n^{...
JEE Main 2023 (Online) 13th April Morning Shift
$$\int_\limits{0}^{\infty} \frac{6}{e^{3 x}+6 e^{2 x}+11 e^{x}+6} d x=$$
JEE Main 2023 (Online) 11th April Evening Shift
If $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a continuous function satisfying $$\int_\limits{0}^{\frac{\pi}{2}} f(\sin 2 x) \sin x d x+\alpha \int_\...
JEE Main 2023 (Online) 11th April Evening Shift
Let the function $$f:[0,2] \rightarrow \mathbb{R}$$ be defined as $$f(x)= \begin{cases}e^{\min \left\{x^{2}, x-[x]\right\},} & x \in[0,1) \\ e^{\left[...
JEE Main 2023 (Online) 11th April Morning Shift
The value of the integral $$\int_\limits{-\log _{e} 2}^{\log _{e} 2} e^{x}\left(\log _{e}\left(e^{x}+\sqrt{1+e^{2 x}}\right)\right) d x$$ is equal to ...
JEE Main 2023 (Online) 10th April Evening Shift
Let $$f$$ be a continuous function satisfying $$\int_\limits{0}^{t^{2}}\left(f(x)+x^{2}\right) d x=\frac{4}{3} t^{3}, \forall t > 0$$. Then $$f\left(...
JEE Main 2023 (Online) 6th April Evening Shift
Let $$f(x)$$ be a function satisfying $$f(x)+f(\pi-x)=\pi^{2}, \forall x \in \mathbb{R}$$. Then $$\int_\limits{0}^{\pi} f(x) \sin x d x$$ is equal to ...
JEE Main 2023 (Online) 6th April Evening Shift
$$\lim _\limits{n \rightarrow \infty}\left\{\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)\left(2^{\frac{1}{2}}-2^{\frac{1}{5}}\right) \ldots . .\left(2...
JEE Main 2023 (Online) 6th April Morning Shift
Let $$5 f(x)+4 f\left(\frac{1}{x}\right)=\frac{1}{x}+3, x > 0$$. Then $$18 \int_\limits{1}^{2} f(x) d x$$ is equal to :
JEE Main 2023 (Online) 1st February Evening Shift
The value of the integral $$\int\limits_{ - {\pi \over 4}}^{{\pi \over 4}} {{{x + {\pi \over 4}} \over {2 - \cos 2x}}dx} $$ is :
JEE Main 2023 (Online) 1st February Morning Shift
$$\mathop {\lim }\limits_{n \to \infty } \left[ {{1 \over {1 + n}} + {1 \over {2 + n}} + {1 \over {3 + n}}\, + \,...\, + \,{1 \over {2n}}} \right]$$ i...
JEE Main 2023 (Online) 31st January Evening Shift
Let $\alpha>0$. If $\int\limits_0^\alpha \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} \mathrm{~d} x=\frac{16+20 \sqrt{2}}{15}$, then $\alpha$ is equal to :
JEE Main 2023 (Online) 31st January Evening Shift
If $\phi(x)=\frac{1}{\sqrt{x}} \int\limits_{\frac{\pi}{4}}^x\left(4 \sqrt{2} \sin t-3 \phi^{\prime}(t)\right) d t, x>0$, then $\emptyset^{\prime}\lef...
JEE Main 2023 (Online) 31st January Morning Shift
Let $$\alpha \in (0,1)$$ and $$\beta = {\log _e}(1 - \alpha )$$. Let $${P_n}(x) = x + {{{x^2}} \over 2} + {{{x^3}} \over 3}\, + \,...\, + \,{{{x^n}}...
JEE Main 2023 (Online) 31st January Morning Shift
The value of $$\int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{(2+3 \sin x)}{\sin x(1+\cos x)} d x$$ is equal to :
JEE Main 2023 (Online) 30th January Evening Shift
$\lim\limits_{n \rightarrow \infty} \frac{3}{n}\left\{4+\left(2+\frac{1}{n}\right)^2+\left(2+\frac{2}{n}\right)^2+\ldots+\left(3-\frac{1}{n}\right)^2\...
JEE Main 2023 (Online) 30th January Morning Shift
If [t] denotes the greatest integer $$\le \mathrm{t}$$, then the value of $${{3(e - 1)} \over e}\int\limits_1^2 {{x^2}{e^{[x] + [{x^3}]}}dx} $$ is :...
JEE Main 2023 (Online) 29th January Evening Shift
The value of the integral $$\int_1^2 {\left( {{{{t^4} + 1} \over {{t^6} + 1}}} \right)dt} $$ is
JEE Main 2023 (Online) 29th January Evening Shift
The value of the integral $$\int\limits_{1/2}^2 {{{{{\tan }^{ - 1}}x} \over x}dx} $$ is equal to :
JEE Main 2023 (Online) 29th January Morning Shift
Let $$f(x) = x + {a \over {{\pi ^2} - 4}}\sin x + {b \over {{\pi ^2} - 4}}\cos x,x \in R$$ be a function which satisfies $$f(x) = x + \int\limits_0^{\...
JEE Main 2023 (Online) 25th January Evening Shift
The integral $$16\int\limits_1^2 {{{dx} \over {{x^3}{{\left( {{x^2} + 2} \right)}^2}}}} $$ is equal to
JEE Main 2023 (Online) 25th January Morning Shift
The minimum value of the function $$f(x) = \int\limits_0^2 {{e^{|x - t|}}dt} $$ is :
JEE Main 2023 (Online) 24th January Evening Shift
$$\int\limits_{{{3\sqrt 2 } \over 4}}^{{{3\sqrt 3 } \over 4}} {{{48} \over {\sqrt {9 - 4{x^2}} }}dx} $$ is equal to :
JEE Main 2022 (Online) 29th July Evening Shift
If $$[t]$$ denotes the greatest integer $$\leq t$$, then the value of $$\int_{0}^{1}\left[2 x-\left|3 x^{2}-5 x+2\right|+1\right] \mathrm{d} x$$ is :...
JEE Main 2022 (Online) 29th July Morning Shift
The integral $$\int\limits_{0}^{\frac{\pi}{2}} \frac{1}{3+2 \sin x+\cos x} \mathrm{~d} x$$ is equal to :
JEE Main 2022 (Online) 29th July Morning Shift
If $$f(\alpha)=\int\limits_{1}^{\alpha} \frac{\log _{10} \mathrm{t}}{1+\mathrm{t}} \mathrm{dt}, \alpha>0$$, then $$f\left(\mathrm{e}^{3}\right)+f\left...
JEE Main 2022 (Online) 28th July Evening Shift
Let $$I_{n}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t, n=1,2,3, \ldots .$$ Then :
JEE Main 2022 (Online) 28th July Morning Shift
The minimum value of the twice differentiable function $$f(x)=\int\limits_{0}^{x} \mathrm{e}^{x-\mathrm{t}} f^{\prime}(\mathrm{t}) \mathrm{dt}-\left(x...
JEE Main 2022 (Online) 27th July Evening Shift
Let $$f(x)=2+|x|-|x-1|+|x+1|, x \in \mathbf{R}$$. Consider $$(\mathrm{S} 1): f^{\prime}\left(-\frac{3}{2}\right)+f^{\prime}\left(-\frac{1}{2}\right)+f...
JEE Main 2022 (Online) 27th July Evening Shift
$$\int\limits_{0}^{2}\left(\left|2 x^{2}-3 x\right|+\left[x-\frac{1}{2}\right]\right) \mathrm{d} x$$, where [t] is the greatest integer function, is e...
JEE Main 2022 (Online) 27th July Morning Shift
Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined as $$f(x)=a \sin \left(\frac{\pi[x]}{2}\right)+[2-x], a \in \mathbb{R}$$ where $$[t...
JEE Main 2022 (Online) 27th July Morning Shift
Let $$ I=\int_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x $$. Then
JEE Main 2022 (Online) 27th July Morning Shift
Let a function $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be defined as : $$f(x)= \begin{cases}\int\limits_{0}^{x}(5-|t-3|) d t, & x>4 \\ x^{2}+b x & , ...
JEE Main 2022 (Online) 26th July Evening Shift
$$ \int\limits_{0}^{20 \pi}(|\sin x|+|\cos x|)^{2} d x \text { is equal to } $$
JEE Main 2022 (Online) 26th July Morning Shift
If $$a = \mathop {\lim }\limits_{n \to \infty } \sum\limits_{k = 1}^n {{{2n} \over {{n^2} + {k^2}}}} $$ and $$f(x) = \sqrt {{{1 - \cos x} \over {1 + \...
JEE Main 2022 (Online) 25th July Evening Shift
$$\mathop {\lim }\limits_{n \to \infty } {1 \over {{2^n}}}\left( {{1 \over {\sqrt {1 - {1 \over {{2^n}}}} }} + {1 \over {\sqrt {1 - {2 \over {{2^n}}}}...
JEE Main 2022 (Online) 25th July Evening Shift
Let $$[t]$$ denote the greatest integer less than or equal to $$t$$. Then the value of the integral $$\int_{-3}^{101}\left([\sin (\pi x)]+e^{[\cos (2 ...
JEE Main 2022 (Online) 25th July Morning Shift
For any real number $$x$$, let $$[x]$$ denote the largest integer less than equal to $$x$$. Let $$f$$ be a real valued function defined on the interva...
JEE Main 2022 (Online) 30th June Morning Shift
$$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{r \over {2{r^2} - 7rn + 6{n^2}}}} $$ is equal to :
JEE Main 2022 (Online) 29th June Evening Shift
Let f be a real valued continuous function on [0, 1] and $$f(x) = x + \int\limits_0^1 {(x - t)f(t)dt} $$. Then, which of the following points (x, y) l...
JEE Main 2022 (Online) 29th June Evening Shift
If $$\int\limits_0^2 {\left( {\sqrt {2x} - \sqrt {2x - {x^2}} } \right)dx = \int\limits_0^1 {\left( {1 - \sqrt {1 - {y^2}} - {{{y^2}} \over 2}} \rig...
JEE Main 2022 (Online) 29th June Morning Shift
Let $$f:R \to R$$ be a function defined by : $$f(x) = \left\{ {\matrix{ {\max \,\{ {t^3} - 3t\} \,t \le x} & ; & {x \le 2} \cr {{x^2} + 2x - 6...
JEE Main 2022 (Online) 29th June Morning Shift
$$\int_0^5 {\cos \left( {\pi \left( {x - \left[ {{x \over 2}} \right]} \right)} \right)dx} $$, where [t] denotes greatest integer less than or equal t...
JEE Main 2022 (Online) 28th June Evening Shift
Let f : R $$\to$$ R be a differentiable function such that $$f\left( {{\pi \over 4}} \right) = \sqrt 2 ,\,f\left( {{\pi \over 2}} \right) = 0$$ and ...
JEE Main 2022 (Online) 28th June Evening Shift
Let f : R $$\to$$ R be a continuous function satisfying f(x) + f(x + k) = n, for all x $$\in$$ R where k > 0 and n is a positive integer. If $${I_1} ...
JEE Main 2022 (Online) 28th June Morning Shift
Let [t] denote the greatest integer less than or equal to t. Then, the value of the integral $$\int\limits_0^1 {[ - 8{x^2} + 6x - 1]dx} $$ is equal to...
JEE Main 2022 (Online) 27th June Evening Shift
If m and n respectively are the number of local maximum and local minimum points of the function $$f(x) = \int\limits_0^{{x^2}} {{{{t^2} - 5t + 4} \ov...
JEE Main 2022 (Online) 27th June Evening Shift
Let f be a differentiable function in $$\left( {0,{\pi \over 2}} \right)$$. If $$\int\limits_{\cos x}^1 {{t^2}\,f(t)dt = {{\sin }^3}x + \cos x} $$, t...
JEE Main 2022 (Online) 27th June Evening Shift
The integral $$\int\limits_0^1 {{1 \over {{7^{\left[ {{1 \over x}} \right]}}}}dx} $$, where [ . ] denotes the greatest integer function, is equal to...
JEE Main 2022 (Online) 27th June Morning Shift
The value of the integral $$\int\limits_{ - 2}^2 {{{|{x^3} + x|} \over {({e^{x|x|}} + 1)}}dx} $$ is equal to :
JEE Main 2022 (Online) 25th June Evening Shift
If $${b_n} = \int_0^{{\pi \over 2}} {{{{{\cos }^2}nx} \over {\sin x}}dx,\,n \in N} $$, then
JEE Main 2022 (Online) 25th June Morning Shift
The value of $$\int\limits_0^\pi {{{{e^{\cos x}}\sin x} \over {(1 + {{\cos }^2}x)({e^{\cos x}} + {e^{ - \cos x}})}}dx} $$ is equal to:
JEE Main 2022 (Online) 24th June Evening Shift
The value of the integral $$\int\limits_{ - \pi /2}^{\pi /2} {{{dx} \over {(1 + {e^x})({{\sin }^6}x + {{\cos }^6}x)}}} $$ is equal to
JEE Main 2022 (Online) 24th June Evening Shift
$$\mathop {\lim }\limits_{n \to \infty } \left( {{{{n^2}} \over {({n^2} + 1)(n + 1)}} + {{{n^2}} \over {({n^2} + 4)(n + 2)}} + {{{n^2}} \over {({n^2} ...
JEE Main 2021 (Online) 1st September Evening Shift
Let f : R $$\to$$ R be a continuous function. Then $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{{\pi \over 4}\int\limits_2^{{{\sec }^2}x} {f(x)\...
JEE Main 2021 (Online) 1st September Evening Shift
Let $${J_{n,m}} = \int\limits_0^{{1 \over 2}} {{{{x^n}} \over {{x^m} - 1}}dx} $$, $$\forall$$ n > m and n, m $$\in$$ N. Consider a matrix $$A = {[{...
JEE Main 2021 (Online) 1st September Evening Shift
The function f(x), that satisfies the condition $$f(x) = x + \int\limits_0^{\pi /2} {\sin x.\cos y\,f(y)\,dy} $$, is :
JEE Main 2021 (Online) 31st August Evening Shift
If [x] is the greatest integer $$\le$$ x, then $${\pi ^2}\int\limits_0^2 {\left( {\sin {{\pi x} \over 2}} \right)(x - [x]} {)^{[x]}}dx$$ is equal to :...
JEE Main 2021 (Online) 31st August Morning Shift
Let f be a non-negative function in [0, 1] and twice differentiable in (0, 1). If $$\int_0^x {\sqrt {1 - {{(f'(t))}^2}} dt = \int_0^x {f(t)dt} } $$, $...
JEE Main 2021 (Online) 27th August Evening Shift
The value of the integral $$\int\limits_0^1 {{{\sqrt x dx} \over {(1 + x)(1 + 3x)(3 + x)}}} $$ is :
JEE Main 2021 (Online) 27th August Morning Shift
If $${U_n} = \left( {1 + {1 \over {{n^2}}}} \right)\left( {1 + {{{2^2}} \over {{n^2}}}} \right)^2.....\left( {1 + {{{n^2}} \over {{n^2}}}} \right)^n$$...
JEE Main 2021 (Online) 27th August Morning Shift
$$\int\limits_6^{16} {{{{{\log }_e}{x^2}} \over {{{\log }_e}{x^2} + {{\log }_e}({x^2} - 44x + 484)}}dx} $$ is equal to :
JEE Main 2021 (Online) 26th August Evening Shift
If the value of the integral $$\int\limits_0^5 {{{x + [x]} \over {{e^{x - [x]}}}}dx = \alpha {e^{ - 1}} + \beta } $$, where $$\alpha$$, $$\beta$$ $$\i...
JEE Main 2021 (Online) 26th August Evening Shift
The value of $$\int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {\left( {{{1 + {{\sin }^2}x} \over {1 + {\pi ^{\sin x}}}}} \right)} \,dx$$ is
JEE Main 2021 (Online) 26th August Morning Shift
The value of $$\int\limits_{{{ - 1} \over {\sqrt 2 }}}^{{1 \over {\sqrt 2 }}} {{{\left( {{{\left( {{{x + 1} \over {x - 1}}} \right)}^2} + {{\left( {{{...
JEE Main 2021 (Online) 26th August Morning Shift
The value of $$\mathop {\lim }\limits_{n \to \infty } {1 \over n}\sum\limits_{r = 0}^{2n - 1} {{{{n^2}} \over {{n^2} + 4{r^2}}}} $$ is :
JEE Main 2021 (Online) 27th July Evening Shift
Let f : (a, b) $$\to$$ R be twice differentiable function such that $$f(x) = \int_a^x {g(t)dt} $$ for a differentiable function g(x). If f(x) = 0 has ...
JEE Main 2021 (Online) 27th July Morning Shift
The value of $$\mathop {\lim }\limits_{n \to \infty } {1 \over n}\sum\limits_{j = 1}^n {{{(2j - 1) + 8n} \over {(2j - 1) + 4n}}} $$ is equal to :
JEE Main 2021 (Online) 27th July Morning Shift
The value of the definite integral$$\int\limits_{ - {\pi \over 4}}^{{\pi \over 4}} {{{dx} \over {(1 + {e^{x\cos x}})({{\sin }^4}x + {{\cos }^4}x)}}}...
JEE Main 2021 (Online) 25th July Evening Shift
If $$f(x) = \left\{ {\matrix{ {\int\limits_0^x {\left( {5 + \left| {1 - t} \right|} \right)dt,} } & {x > 2} \cr {5x + 1,} & {x \le ...
JEE Main 2021 (Online) 25th July Evening Shift
The value of the integral $$\int\limits_{ - 1}^1 {\log \left( {x + \sqrt {{x^2} + 1} } \right)dx} $$ is :
JEE Main 2021 (Online) 25th July Morning Shift
The value of the definite integral $$\int\limits_{\pi /24}^{5\pi /24} {{{dx} \over {1 + \root 3 \of {\tan 2x} }}} $$ is :
JEE Main 2021 (Online) 25th July Morning Shift
Let $$f:[0,\infty ) \to [0,\infty )$$ be defined as $$f(x) = \int_0^x {[y]dy} $$where [x] is the greatest integer less than or equal to x. Which of th...
JEE Main 2021 (Online) 22th July Evening Shift
If $$\int\limits_0^{100\pi } {{{{{\sin }^2}x} \over {{e^{\left( {{x \over \pi } - \left[ {{x \over \pi }} \right]} \right)}}}}dx = {{\alpha {\pi ^3}} ...
JEE Main 2021 (Online) 20th July Evening Shift
If [x] denotes the greatest integer less than or equal to x, then the value of the integral $$\int_{ - \pi /2}^{\pi /2} {[[x] - \sin x]dx} $$ is equal...
JEE Main 2021 (Online) 20th July Evening Shift
If the real part of the complex number $${(1 - \cos \theta + 2i\sin \theta )^{ - 1}}$$ is $${1 \over 5}$$ for $$\theta \in (0,\pi )$$, then the valu...
JEE Main 2021 (Online) 20th July Evening Shift
Let $$g(t) = \int_{ - \pi /2}^{\pi /2} {\cos \left( {{\pi \over 4}t + f(x)} \right)} dx$$, where $$f(x) = {\log _e}\left( {x + \sqrt {{x^2} + 1} } \r...
JEE Main 2021 (Online) 20th July Morning Shift
Let a be a positive real number such that $$\int_0^a {{e^{x - [x]}}} dx = 10e - 9$$ where [ x ] is the greatest integer less than or equal to x. Then ...
JEE Main 2021 (Online) 20th July Morning Shift
The value of the integral $$\int\limits_{ - 1}^1 {{{\log }_e}(\sqrt {1 - x} + \sqrt {1 + x} )dx} $$ is equal to:
JEE Main 2021 (Online) 18th March Evening Shift
Let g(x) = $$\int_0^x {f(t)dt} $$, where f is continuous function in [ 0, 3 ] such that $${1 \over 3}$$ $$ \le $$ f(t) $$ \le $$ 1 for all t$$\in$$ [0...
JEE Main 2021 (Online) 17th March Evening Shift
Let f : R $$ \to $$ R be defined as f(x) = e$$-$$xsinx. If F : [0, 1] $$ \to $$ R is a differentiable function with that F(x) = $$\int_0^x {f(t)dt} $$...
JEE Main 2021 (Online) 17th March Evening Shift
If the integral $$\int_0^{10} {{{[\sin 2\pi x]} \over {{e^{x - [x]}}}}} dx = \alpha {e^{ - 1}} + \beta {e^{ - {1 \over 2}}} + \gamma $$, where $$\alp...
JEE Main 2021 (Online) 17th March Morning Shift
Which of the following statements is correct for the function g($$\alpha$$) for $$\alpha$$ $$\in$$ R such that $$g(\alpha ) = \int\limits_{{\pi \over...
JEE Main 2021 (Online) 16th March Evening Shift
Consider the integral $$I = \int_0^{10} {{{[x]{e^{[x]}}} \over {{e^{x - 1}}}}dx} $$, where [x] denotes the greatest integer less than or equal to x. T...
JEE Main 2021 (Online) 16th March Evening Shift
Let P(x) = x2 + bx + c be a quadratic polynomial with real coefficients such that $$\int_0^1 {P(x)dx} $$ = 1 and P(x) leaves remainder 5 when it is di...
JEE Main 2021 (Online) 26th February Evening Shift
Let $$f(x) = \int\limits_0^x {{e^t}f(t)dt + {e^x}} $$ be a differentiable function for all x$$\in$$R. Then f(x) equals :
JEE Main 2021 (Online) 26th February Evening Shift
For x > 0, if $$f(x) = \int\limits_1^x {{{{{\log }_e}t} \over {(1 + t)}}dt} $$, then $$f(e) + f\left( {{1 \over e}} \right)$$ is equal to :
JEE Main 2021 (Online) 26th February Morning Shift
The value of $$\int\limits_{ - \pi /2}^{\pi /2} {{{{{\cos }^2}x} \over {1 + {3^x}}}} dx$$ is :
JEE Main 2021 (Online) 26th February Morning Shift
The value of $$\sum\limits_{n = 1}^{100} {\int\limits_{n - 1}^n {{e^{x - [x]}}dx} } $$, where [ x ] is the greatest integer $$ \le $$ x, is :
JEE Main 2021 (Online) 25th February Evening Shift
If $${I_n} = \int\limits_{{\pi \over 4}}^{{\pi \over 2}} {{{\cot }^n}x\,dx} $$, then :
JEE Main 2021 (Online) 25th February Evening Shift
$$\mathop {\lim }\limits_{n \to \infty } \left[ {{1 \over n} + {n \over {{{(n + 1)}^2}}} + {n \over {{{(n + 2)}^2}}} + ........ + {n \over {{{(2n + 1)...
JEE Main 2021 (Online) 25th February Morning Shift
The value of $$\int\limits_{ - 1}^1 {{x^2}{e^{[{x^3}]}}} dx$$, where [ t ] denotes the greatest integer $$ \le $$ t, is :
JEE Main 2021 (Online) 24th February Evening Shift
The value of the integral, $$\int\limits_1^3 {[{x^2} - 2x - 2]dx} $$, where [x] denotes the greatest integer less than or equal to x, is :
JEE Main 2021 (Online) 24th February Evening Shift
Let f(x) be a differentiable function defined on [0, 2] such that f'(x) = f'(2 $$-$$ x) for all x$$ \in $$ (0, 2), f(0) = 1 and f(2) = e2. Then the va...
JEE Main 2021 (Online) 24th February Evening Shift
Let f be a twice differentiable function defined on R such that f(0) = 1, f'(0) = 2 and f'(x) $$ \ne $$ 0 for all x $$ \in $$ R. If $$\left| {\matrix{...
JEE Main 2021 (Online) 24th February Morning Shift
$$\mathop {\lim }\limits_{x \to 0} {{\int\limits_0^{{x^2}} {\left( {\sin \sqrt t } \right)dt} } \over {{x^3}}}$$ is equal to :
JEE Main 2020 (Online) 6th September Evening Slot
The integral $$\int\limits_1^2 {{e^x}.{x^x}\left( {2 + {{\log }_e}x} \right)} dx$$ equals :
JEE Main 2020 (Online) 6th September Morning Slot
$$\mathop {\lim }\limits_{x \to 1} \left( {{{\int\limits_0^{{{\left( {x - 1} \right)}^2}} {t\cos \left( {{t^2}} \right)dt} } \over {\left( {x - 1} \ri...
JEE Main 2020 (Online) 6th September Morning Slot
If I1 = $$\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}} dx$$ and I2 = $$\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}} dx$$ suc...
JEE Main 2020 (Online) 5th September Morning Slot
The value of $$\int\limits_{{{ - \pi } \over 2}}^{{\pi \over 2}} {{1 \over {1 + {e^{\sin x}}}}dx} $$ is:
JEE Main 2020 (Online) 4th September Evening Slot
The integral $$\int\limits_{{\pi \over 6}}^{{\pi \over 3}} {{{\tan }^3}x.{{\sin }^2}3x\left( {2{{\sec }^2}x.{{\sin }^2}3x + 3\tan x.\sin 6x} \right)...
JEE Main 2020 (Online) 4th September Morning Slot
Let $$f(x) = \left| {x - 2} \right|$$ and g(x) = f(f(x)), $$x \in \left[ {0,4} \right]$$. Then $$\int\limits_0^3 {\left( {g(x) - f(x)} \right)} dx$$ i...
JEE Main 2020 (Online) 3rd September Evening Slot
If the value of the integral $$\int\limits_0^{{1 \over 2}} {{{{x^2}} \over {{{\left( {1 - {x^2}} \right)}^{{3 \over 2}}}}}} dx$$ is $${k \over 6}$$,...
JEE Main 2020 (Online) 3rd September Evening Slot
Suppose f(x) is a polynomial of degree four, having critical points at –1, 0, 1. If T = {x $$ \in $$ R | f(x) = f(0)}, then the sum of squares of all...
JEE Main 2020 (Online) 3rd September Morning Slot
$$\int\limits_{ - \pi }^\pi {\left| {\pi - \left| x \right|} \right|dx} $$ is equal to :
JEE Main 2020 (Online) 9th January Evening Slot
Let a function ƒ : [0, 5] $$ \to $$ R be continuous, ƒ(1) = 3 and F be defined as : $$F(x) = \int\limits_1^x {{t^2}g(t)dt} $$ , where $$g(t) = \int\li...
JEE Main 2020 (Online) 9th January Morning Slot
If for all real triplets (a, b, c), ƒ(x) = a + bx + cx2; then $$\int\limits_0^1 {f(x)dx} $$ is equal to :
JEE Main 2020 (Online) 9th January Morning Slot
The value of $$\int\limits_0^{2\pi } {{{x{{\sin }^8}x} \over {{{\sin }^8}x + {{\cos }^8}x}}} dx$$ is equal to :
JEE Main 2020 (Online) 8th January Evening Slot
If $$I = \int\limits_1^2 {{{dx} \over {\sqrt {2{x^3} - 9{x^2} + 12x + 4} }}} $$, then :
JEE Main 2020 (Online) 8th January Evening Slot
$$\mathop {\lim }\limits_{x \to 0} {{\int_0^x {t\sin \left( {10t} \right)dt} } \over x}$$ is equal to
JEE Main 2020 (Online) 7th January Evening Slot
The value of $$\alpha $$ for which $$4\alpha \int\limits_{ - 1}^2 {{e^{ - \alpha \left| x \right|}}dx} = 5$$, is:
JEE Main 2020 (Online) 7th January Evening Slot
If $$\theta $$1 and $$\theta $$2 be respectively the smallest and the largest values of $$\theta $$ in (0, 2$$\pi $$) - {$$\pi $$} which satisfy the...
JEE Main 2020 (Online) 7th January Morning Slot
If ƒ(a + b + 1 - x) = ƒ(x), for all x, where a and b are fixed positive real numbers, then $${1 \over {a + b}}\int_a^b {x\left( {f(x) + f(x + 1)} \rig...
JEE Main 2019 (Online) 12th April Evening Slot
A value of $$\alpha $$ such that $$\int\limits_\alpha ^{\alpha + 1} {{{dx} \over {\left( {x + \alpha } \right)\left( {x + \alpha + 1} \right)}}} = ...
JEE Main 2019 (Online) 12th April Morning Slot
Let f : R $$ \to $$ R be a continuously differentiable function such that f(2) = 6 and f'(2) = $${1 \over {48}}$$. If $$\int\limits_6^{f\left( x \righ...
JEE Main 2019 (Online) 12th April Morning Slot
If $$\int\limits_0^{{\pi \over 2}} {{{\cot x} \over {\cot x + \cos ecx}}} dx$$ = m($$\pi $$ + n), then m.n is equal to
JEE Main 2019 (Online) 10th April Evening Slot
The integral $$\int\limits_{\pi /6}^{\pi /3} {{{\sec }^{2/3}}} x\cos e{c^{4/3}}xdx$$ is equal to :
JEE Main 2019 (Online) 10th April Morning Slot
$$\mathop {\lim }\limits_{n \to \infty } \left( {{{{{(n + 1)}^{1/3}}} \over {{n^{4/3}}}} + {{{{(n + 2)}^{1/3}}} \over {{n^{4/3}}}} + ....... + {{{{(2n...
JEE Main 2019 (Online) 10th April Morning Slot
The value of $$\int\limits_0^{2\pi } {\left[ {\sin 2x\left( {1 + \cos 3x} \right)} \right]} dx$$, where [t] denotes the greatest integer function is :...
JEE Main 2019 (Online) 9th April Evening Slot
If f : R $$ \to $$ R is a differentiable function and f(2) = 6, then $$\mathop {\lim }\limits_{x \to 2} {{\int\limits_6^{f\left( x \right)} {2tdt} } \...
JEE Main 2019 (Online) 9th April Evening Slot
The value of the integral $$\int\limits_0^1 {x{{\cot }^{ - 1}}(1 - {x^2} + {x^4})dx} $$ is :-
JEE Main 2019 (Online) 9th April Morning Slot
The value of $$\int\limits_0^{\pi /2} {{{{{\sin }^3}x} \over {\sin x + \cos x}}dx} $$ is
JEE Main 2019 (Online) 8th April Evening Slot
Let $$f(x) = \int\limits_0^x {g(t)dt} $$ where g is a non-zero even function. If ƒ(x + 5) = g(x), then $$ \int\limits_0^x {f(t)dt} $$ equals-
JEE Main 2019 (Online) 8th April Morning Slot
If $$f(x) = {{2 - x\cos x} \over {2 + x\cos x}}$$ and g(x) = logex, (x > 0) then the value of integral $$\int\limits_{ - {\pi \over 4}}^{{\pi \ov...
JEE Main 2019 (Online) 12th January Evening Slot
$$\mathop {\lim }\limits_{x \to \infty } \left( {{n \over {{n^2} + {1^2}}} + {n \over {{n^2} + {2^2}}} + {n \over {{n^2} + {3^2}}} + ..... + {1 \over ...
JEE Main 2019 (Online) 12th January Evening Slot
The integral $$\int\limits_1^e {\left\{ {{{\left( {{x \over e}} \right)}^{2x}} - {{\left( {{e \over x}} \right)}^x}} \right\}} \,$$ loge x dx is equal...
JEE Main 2019 (Online) 12th January Morning Slot
Let f and g be continuous functions on [0, a] such that f(x) = f(a – x) and g(x) + g(a – x) = 4, then $$\int\limits_0^a \, $$f(x) g(x) dx is equal to ...
JEE Main 2019 (Online) 11th January Evening Slot
The integral  $$\int\limits_{\pi /6}^{\pi /4} {{{dx} \over {\sin 2x\left( {{{\tan }^5}x + {{\cot }^5}x} \right)}}} $$  equals :
JEE Main 2019 (Online) 11th January Morning Slot
The value of the integral $$\int\limits_{ - 2}^2 {{{{{\sin }^2}x} \over { \left[ {{x \over \pi }} \right] + {1 \over 2}}}} \,dx$$ (where [x] denotes ...
JEE Main 2019 (Online) 10th January Evening Slot
If  $$\int\limits_0^x \, $$f(t) dt = x2 + $$\int\limits_x^1 \, $$ t2f(t) dt then f '$$\left( {{1 \over 2}} \right)$$ is -...
JEE Main 2019 (Online) 10th January Evening Slot
The value of   $$\int\limits_{ - \pi /2}^{\pi /2} {{{dx} \over {\left[ x \right] + \left[ {\sin x} \right] + 4}}} ,$$  where [t] d...
JEE Main 2019 (Online) 10th January Morning Slot
Let  $${\rm I} = \int\limits_a^b {\left( {{x^4} - 2{x^2}} \right)} dx.$$  If I is minimum then the ordered pair (a, b) is -
JEE Main 2019 (Online) 9th January Evening Slot
If   $$\int\limits_0^{{\pi \over 3}} {{{\tan \theta } \over {\sqrt {2k\,\sec \theta } }}} \,d\theta = 1 - {1 \over {\sqrt 2 }},\left(...
JEE Main 2019 (Online) 9th January Evening Slot
Let f be a differentiable function from R to R such that $$\left| {f\left( x \right) - f\left( y \right)} \right| \le 2{\left| {x - y} \right|^{{3 \o...
JEE Main 2019 (Online) 9th January Morning Slot
The value of $$\int\limits_0^\pi {{{\left| {\cos x} \right|}^3}} \,dx$$ is :
JEE Main 2018 (Online) 16th April Morning Slot
If $$f(x) = \int\limits_0^x {t\left( {\sin x - \sin t} \right)dt\,\,\,} $$ then :
JEE Main 2018 (Offline)
The value of $$\int\limits_{ - \pi /2}^{\pi /2} {{{{{\sin }^2}x} \over {1 + {2^x}}}} dx$$ is
JEE Main 2018 (Online) 15th April Evening Slot
If   $${I_1} = \int_0^1 {{e^{ - x}}} {\cos ^2}x{\mkern 1mu} dx;$$    $${I_2} = \int_0^1 {{e^{ - {x^2}}}} {\cos ^2}x{\mkern 1mu} d...
JEE Main 2018 (Online) 15th April Evening Slot
The value of integral $$\int_{{\pi \over 4}}^{{{3\pi } \over 4}} {{x \over {1 + \sin x}}dx} $$ is :
JEE Main 2018 (Online) 15th April Morning Slot
The value of the integral $$\int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {{{\sin }^4}} x\left( {1 + \log \left( {{{2 + \sin x} \over {2 - \sin x}}...
JEE Main 2017 (Online) 9th April Morning Slot
If    $$\mathop {\lim }\limits_{n \to \infty } \,\,{{{1^a} + {2^a} + ...... + {n^a}} \over {{{(n + 1)}^{a - 1}}\left[ {\left( {na + 1} \righ...
JEE Main 2017 (Online) 9th April Morning Slot
If    $$\int\limits_1^2 {{{dx} \over {{{\left( {{x^2} - 2x + 4} \right)}^{{3 \over 2}}}}}} = {k \over {k + 5}},$$ then k is equal to :
JEE Main 2017 (Online) 8th April Morning Slot
The integral $$\int_{{\pi \over {12}}}^{{\pi \over 4}} {\,\,{{8\cos 2x} \over {{{\left( {\tan x + \cot x} \right)}^3}}}} \,dx$$ equals :
JEE Main 2017 (Offline)
The integral $$\int\limits_{{\pi \over 4}}^{{{3\pi } \over 4}} {{{dx} \over {1 + \cos x}}} $$ is equal to
JEE Main 2016 (Online) 10th April Morning Slot
For x $$ \in $$ R, x $$ \ne $$ 0, if y(x) is a differentiable function such that x $$\int\limits_1^x y $$ (t) dt = (x + 1) $$\int\limits_1^x ty $$ (t...
JEE Main 2016 (Online) 10th April Morning Slot
The value of the integral $$\int\limits_4^{10} {{{\left[ {{x^2}} \right]dx} \over {\left[ {{x^2} - 28x + 196} \right] + \left[ {{x^2}} \right]}}} ,$$ ...
JEE Main 2016 (Online) 9th April Morning Slot
If   $$2\int\limits_0^1 {{{\tan }^{ - 1}}xdx = \int\limits_0^1 {{{\cot }^{ - 1}}} } \left( {1 - x + {x^2}} \right)dx,$$ then $$\int\limits_0...
JEE Main 2016 (Offline)
$$\mathop {\lim }\limits_{n \to \infty } {\left( {{{\left( {n + 1} \right)\left( {n + 2} \right)...3n} \over {{n^{2n}}}}} \right)^{{1 \over n}}}$$ is ...
JEE Main 2015 (Offline)
The integral $$\int\limits_2^4 {{{\log \,{x^2}} \over {\log {x^2} + \log \left( {36 - 12x + {x^2}} \right)}}dx} $$ is equal to :
JEE Main 2014 (Offline)
The integral $$\int\limits_0^\pi {\sqrt {1 + 4{{\sin }^2}{x \over 2} - 4\sin {x \over 2}{\mkern 1mu} } } dx$$ equals:
JEE Main 2013 (Offline)
Statement-1 : The value of the integral $$\int\limits_{\pi /6}^{\pi /3} {{{dx} \over {1 + \sqrt {\tan \,x} }}} $$ is equal to $$\pi /6$$ Statement-2 ...
AIEEE 2011
The value of $$\int\limits_0^1 {{{8\log \left( {1 + x} \right)} \over {1 + {x^2}}}} dx$$ is
AIEEE 2010
Let $$p(x)$$ be a function defined on $$R$$ such that $$p'(x)=p'(1-x),$$ for all $$x \in \left[ {0,1} \right],p\left( 0 \right) = 1$$ and $$p(1)=41.$$...
AIEEE 2009
$$\int\limits_0^\pi {\left[ {\cot x} \right]dx,} $$ where $$\left[ . \right]$$ denotes the greatest integer function, is equal to:
AIEEE 2007
The solution for $$x$$ of the equation $$\int\limits_{\sqrt 2 }^x {{{dt} \over {t\sqrt {{t^2} - 1} }} = {\pi \over 2}} $$ is
AIEEE 2007
Let $$I = \int\limits_0^1 {{{\sin x} \over {\sqrt x }}dx} $$ and $$J = \int\limits_0^1 {{{\cos x} \over {\sqrt x }}dx} .$$ Then which one of the follo...
AIEEE 2007
Let $$F\left( x \right) = f\left( x \right) + f\left( {{1 \over x}} \right),$$ where $$f\left( x \right) = \int\limits_l^x {{{\log t} \over {1 + t}}dt...
AIEEE 2006
$$\int\limits_0^\pi {xf\left( {\sin x} \right)dx} $$ is equal to
AIEEE 2006
$$\int\limits_{ - {{3\pi } \over 2}}^{ - {\pi \over 2}} {\left[ {{{\left( {x + \pi } \right)}^3} + {{\cos }^2}\left( {x + 3\pi } \right)} \right]} dx...
AIEEE 2006
The value of $$\int\limits_1^a {\left[ x \right]} f'\left( x \right)dx,a > 1$$ where $${\left[ x \right]}$$ denotes the greatest integer not exceed...
AIEEE 2005
If $${I_1} = \int\limits_0^1 {{2^{{x^2}}}dx,{I_2} = \int\limits_0^1 {{2^{{x^3}}}dx,\,{I_3} = \int\limits_1^2 {{2^{{x^2}}}dx} } } $$ and $${I_4} = \int...
AIEEE 2005
The value of $$\int\limits_{ - \pi }^\pi {{{{{\cos }^2}} \over {1 + {a^x}}}dx,\,\,a > 0,} $$ is
AIEEE 2005
The value of integral, $$\int\limits_3^6 {{{\sqrt x } \over {\sqrt {9 - x} + \sqrt x }}} dx $$ is
AIEEE 2005
$$\mathop {\lim }\limits_{n \to \infty } \left[ {{1 \over {{n^2}}}{{\sec }^2}{1 \over {{n^2}}} + {2 \over {{n^2}}}{{\sec }^2}{4 \over {{n^2}}}.... + {...
AIEEE 2005
Let $$f:R \to R$$ be a differentiable function having $$f\left( 2 \right) = 6$$, $$f'\left( 2 \right) = \left( {{1 \over {48}}} \right)$$. Then $$...
AIEEE 2004
If $$\int\limits_0^\pi {xf\left( {\sin x} \right)dx = A\int\limits_0^{\pi /2} {f\left( {\sin x} \right)dx,} } $$ then $$A$$ is
AIEEE 2004
If $$f\left( x \right) = {{{e^x}} \over {1 + {e^x}}},{I_1} = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {xg\left\{ {x\left( {1 - x} \rig...
AIEEE 2004
The value of $$I = \int\limits_0^{\pi /2} {{{{{\left( {\sin x + \cos x} \right)}^2}} \over {\sqrt {1 + \sin 2x} }}dx} $$ is
AIEEE 2004
The value of $$\int\limits_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} $$ is
AIEEE 2004
$$\mathop {Lim}\limits_{n \to \infty } \sum\limits_{r = 1}^n {{1 \over n}{e^{{r \over n}}}} $$ is
AIEEE 2003
Let $$f(x)$$ be a function satisfying $$f'(x)=f(x)$$ with $$f(0)=1$$ and $$g(x)$$ be a function that satisfies $$f\left( x \right) + g\left( x \right)...
AIEEE 2003
If $$f\left( {a + b - x} \right) = f\left( x \right)$$ then $$\int\limits_a^b {xf\left( x \right)dx} $$ is equal to
AIEEE 2003
The value of the integral $$I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} $$ is
AIEEE 2003
$$\mathop {\lim }\limits_{n \to \infty } {{1 + {2^4} + {3^4} + .... + {n^4}} \over {{n^5}}}$$ - $$\mathop {\lim }\limits_{n \to \infty } {{1 + {2^3} +...
AIEEE 2003
The value of $$\mathop {\lim }\limits_{x \to 0} {{\int\limits_0^{{x^2}} {{{\sec }^2}tdt} } \over xsinx}$$ is
AIEEE 2003
If $$f\left( y \right) = {e^y},$$ $$g\left( y \right) = y;y > 0$$ and $$F\left( t \right) = \int\limits_0^t {f\left( {t - y} \right)g\left( y \rig...
AIEEE 2002
$$\mathop {\lim }\limits_{n \to \infty } {{{1^p} + {2^p} + {3^p} + ..... + {n^p}} \over {{n^{p + 1}}}}$$ is
AIEEE 2002
$$\int\limits_0^{10\pi } {\left| {\sin x} \right|dx} $$ is
AIEEE 2002
$${I_n} = \int\limits_0^{\pi /4} {{{\tan }^n}x\,dx} $$ then $$\,\mathop {\lim }\limits_{n \to \infty } \,n\left[ {{I_n} + {I_{n + 2}}} \right]$$ equal...
AIEEE 2002
$$\int\limits_0^2 {\left[ {{x^2}} \right]dx} $$ is
AIEEE 2002
$$\int_{ - \pi }^\pi {{{2x\left( {1 + \sin x} \right)} \over {1 + {{\cos }^2}x}}} dx$$ is
AIEEE 2002
If $$y=f(x)$$ makes +$$ve$$ intercept of $$2$$ and $$0$$ unit on $$x$$ and $$y$$ axes and encloses an area of $$3/4$$ square unit with the axes then $...

Numerical

JEE Main 2024 (Online) 9th April Morning Shift
Let $$\lim _\limits{n \rightarrow \infty}\left(\frac{n}{\sqrt{n^4+1}}-\frac{2 n}{\left(n^2+1\right) \sqrt{n^4+1}}+\frac{n}{\sqrt{n^4+16}}-\frac{8 n}{\...
JEE Main 2024 (Online) 6th April Evening Shift
Let $$[t]$$ denote the largest integer less than or equal to $$t$$. If $$\int_\limits0^3\left(\left[x^2\right]+\left[\frac{x^2}{2}\right]\right) \math...
JEE Main 2024 (Online) 6th April Morning Shift
Let $$r_k=\frac{\int_0^1\left(1-x^7\right)^k d x}{\int_0^1\left(1-x^7\right)^{k+1} d x}, k \in \mathbb{N}$$. Then the value of $$\sum_\limits{k=1}^{10...
JEE Main 2024 (Online) 5th April Evening Shift
If $$f(t)=\int_\limits0^\pi \frac{2 x \mathrm{~d} x}{1-\cos ^2 \mathrm{t} \sin ^2 x}, 0...
JEE Main 2024 (Online) 4th April Morning Shift
If the shortest distance between the lines $$\frac{x+2}{2}=\frac{y+3}{3}=\frac{z-5}{4}$$ and $$\frac{x-3}{1}=\frac{y-2}{-3}=\frac{z+4}{2}$$ is $$\frac...
JEE Main 2024 (Online) 4th April Morning Shift
If $$\int_0^{\frac{\pi}{4}} \frac{\sin ^2 x}{1+\sin x \cos x} \mathrm{~d} x=\frac{1}{\mathrm{a}} \log _{\mathrm{e}}\left(\frac{\mathrm{a}}{3}\right)+\...
JEE Main 2024 (Online) 1st February Evening Shift
Let $f:(0, \infty) \rightarrow \mathbf{R}$ and $\mathrm{F}(x)=\int\limits_0^x \mathrm{t} f(\mathrm{t}) \mathrm{dt}$. If $\mathrm{F}\left(x^2\right)=x^...
JEE Main 2024 (Online) 1st February Morning Shift
If $\int\limits_{-\pi / 2}^{\pi / 2} \frac{8 \sqrt{2} \cos x \mathrm{~d} x}{\left(1+\mathrm{e}^{\sin x}\right)\left(1+\sin ^4 x\right)}=\alpha \pi+\be...
JEE Main 2024 (Online) 31st January Evening Shift
$$\left|\frac{120}{\pi^3} \int_\limits0^\pi \frac{x^2 \sin x \cos x}{\sin ^4 x+\cos ^4 x} d x\right| \text { is equal to }$$ ________.
JEE Main 2024 (Online) 31st January Morning Shift
If the integral $$525 \int_\limits0^{\frac{\pi}{2}} \sin 2 x \cos ^{\frac{11}{2}} x\left(1+\operatorname{Cos}^{\frac{5}{2}} x\right)^{\frac{1}{2}} d x...
JEE Main 2024 (Online) 31st January Morning Shift
Let $$S=(-1, \infty)$$ and $$f: S \rightarrow \mathbb{R}$$ be defined as $$f(x)=\int_\limits{-1}^x\left(e^t-1\right)^{11}(2 t-1)^5(t-2)^7(t-3)^{12}(2 ...
JEE Main 2024 (Online) 31st January Morning Shift
Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined by $$f(x)=\frac{4^x}{4^x+2}$$ and $$M=\int_\limits{f(a)}^{f(1-a)} x \sin ^4(x(1-x))...
JEE Main 2024 (Online) 30th January Morning Shift
The value of $$9 \int_\limits0^9\left[\sqrt{\frac{10 x}{x+1}}\right] \mathrm{d} x$$, where $$[t]$$ denotes the greatest integer less than or equal to ...
JEE Main 2024 (Online) 29th January Evening Shift
Let the slope of the line $$45 x+5 y+3=0$$ be $$27 r_1+\frac{9 r_2}{2}$$ for some $$r_1, r_2 \in \mathbb{R}$$. Then $$\lim _\limits{x \rightarrow 3}\l...
JEE Main 2024 (Online) 29th January Evening Shift
If $$\int_\limits{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\sin 2 x} d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}$$, where $$\alpha, \beta$$ and $$\gamma$$...
JEE Main 2024 (Online) 27th January Evening Shift
Let $$f(x)=\int_\limits0^x g(t) \log _{\mathrm{e}}\left(\frac{1-\mathrm{t}}{1+\mathrm{t}}\right) \mathrm{dt}$$, where $$g$$ is a continuous odd functi...
JEE Main 2023 (Online) 13th April Evening Shift
Let $$f_{n}=\int_\limits{0}^{\frac{\pi}{2}}\left(\sum_\limits{k=1}^{n} \sin ^{k-1} x\right)\left(\sum_\limits{k=1}^{n}(2 k-1) \sin ^{k-1} x\right) \co...
JEE Main 2023 (Online) 13th April Morning Shift
Let for $$x \in \mathbb{R}, S_{0}(x)=x, S_{k}(x)=C_{k} x+k \int_{0}^{x} S_{k-1}(t) d t$$, where $$C_{0}=1, C_{k}=1-\int_{0}^{1} S_{k-1}(x) d x, k=1,2...
JEE Main 2023 (Online) 12th April Morning Shift
If $$\int_\limits{-0.15}^{0.15}\left|100 x^{2}-1\right| d x=\frac{k}{3000}$$, then $$k$$ is equal to ___________.
JEE Main 2023 (Online) 11th April Morning Shift
For $$m, n > 0$$, let $$\alpha(m, n)=\int_\limits{0}^{2} t^{m}(1+3 t)^{n} d t$$. If $$11 \alpha(10,6)+18 \alpha(11,5)=p(14)^{6}$$, then $$p$$ is equal...
JEE Main 2023 (Online) 8th April Evening Shift
Let $$[t]$$ denote the greatest integer function. If $$\int_\limits{0}^{2.4}\left[x^{2}\right] d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}+\delta \sqrt{...
JEE Main 2023 (Online) 8th April Morning Shift
Let $$[t]$$ denote the greatest integer $$\leq t$$. Then $$\frac{2}{\pi} \int_\limits{\pi / 6}^{5 \pi / 6}(8[\operatorname{cosec} x]-5[\cot x]) d x$$ ...
JEE Main 2023 (Online) 6th April Evening Shift
Let $$f(x)=\frac{x}{\left(1+x^{n}\right)^{\frac{1}{n}}}, x \in \mathbb{R}-\{-1\}, n \in \mathbb{N}, n > 2$$. If $$f^{n}(x)=\left(f \circ f \circ f \ld...
JEE Main 2023 (Online) 1st February Evening Shift
If $$\int\limits_0^\pi {{{{5^{\cos x}}(1 + \cos x\cos 3x + {{\cos }^2}x + {{\cos }^3}x\cos 3x)dx} \over {1 + {5^{\cos x}}}} = {{k\pi } \over {16}}} $...
JEE Main 2023 (Online) 1st February Morning Shift
If $$\int_\limits{0}^{1}\left(x^{21}+x^{14}+x^{7}\right)\left(2 x^{14}+3 x^{7}+6\right)^{1 / 7} d x=\frac{1}{l}(11)^{m / n}$$ where $$l, m, n \in \mat...
JEE Main 2023 (Online) 1st February Morning Shift
Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a differentiable function such that $$f^{\prime}(x)+f(x)=\int_\limits{0}^{2} f(t) d t$$. If $$f(0)=e^{...
JEE Main 2023 (Online) 30th January Morning Shift
$$\lim_\limits{x \rightarrow 0} \frac{48}{x^{4}} \int_\limits{0}^{x} \frac{t^{3}}{t^{6}+1} \mathrm{~d} t$$ is equal to ___________.
JEE Main 2023 (Online) 25th January Evening Shift
If $$\int\limits_{{1 \over 3}}^3 {|{{\log }_e}x|dx = {m \over n}{{\log }_e}\left( {{{{n^2}} \over e}} \right)} $$, where m and n are coprime natural n...
JEE Main 2023 (Online) 24th January Evening Shift
Let $$f$$ be $$a$$ differentiable function defined on $$\left[ {0,{\pi \over 2}} \right]$$ such that $$f(x) > 0$$ and $$f(x) + \int_0^x {f(t)\sqrt {1...
JEE Main 2023 (Online) 24th January Morning Shift
The value of $$12\int\limits_0^3 {\left| {{x^2} - 3x + 2} \right|dx} $$ is ____________
JEE Main 2023 (Online) 24th January Morning Shift
The value of $${8 \over \pi }\int\limits_0^{{\pi \over 2}} {{{{{(\cos x)}^{2023}}} \over {{{(\sin x)}^{2023}} + {{(\cos x)}^{2023}}}}dx} $$ is ______...
JEE Main 2022 (Online) 28th July Evening Shift
The value of the integral $$\int\limits_{0}^{\frac{\pi}{2}} 60 \frac{\sin (6 x)}{\sin x} d x$$ is equal to _________.
JEE Main 2022 (Online) 28th July Morning Shift
If $$\int\limits_{0}^{\sqrt{3}} \frac{15 x^{3}}{\sqrt{1+x^{2}+\sqrt{\left(1+x^{2}\right)^{3}}}} \mathrm{~d} x=\alpha \sqrt{2}+\beta \sqrt{3}$$, where ...
JEE Main 2022 (Online) 27th July Evening Shift
Let $$f(x)=\min \{[x-1],[x-2], \ldots,[x-10]\}$$ where [t] denotes the greatest integer $$\leq \mathrm{t}$$. Then $$\int\limits_{0}^{10} f(x) \mathrm{...
JEE Main 2022 (Online) 27th July Evening Shift
Let f be a differentiable function satisfying $$f(x)=\frac{2}{\sqrt{3}} \int\limits_{0}^{\sqrt{3}} f\left(\frac{\lambda^{2} x}{3}\right) \mathrm{d} \l...
JEE Main 2022 (Online) 26th July Morning Shift
If $$\mathrm{n}(2 \mathrm{n}+1) \int_{0}^{1}\left(1-x^{\mathrm{n}}\right)^{2 \mathrm{n}} \mathrm{d} x=1177 \int_{0}^{1}\left(1-x^{\mathrm{n}}\right)^{...
JEE Main 2022 (Online) 25th July Evening Shift
Let $$f$$ be a twice differentiable function on $$\mathbb{R}$$. If $$f^{\prime}(0)=4$$ and $$f(x) + \int\limits_0^x {(x - t)f'(t)dt = \left( {{e^{2x}}...
JEE Main 2022 (Online) 25th July Evening Shift
Let $${a_n} = \int\limits_{ - 1}^n {\left( {1 + {x \over 2} + {{{x^2}} \over 3} + \,\,.....\,\, + \,\,{{{x^{n - 1}}} \over n}} \right)dx} $$ for every...
JEE Main 2022 (Online) 25th July Morning Shift
$$ \begin{aligned} &\text { If } \lim _{n \rightarrow \infty} \frac{(n+1)^{k-1}}{n^{k+1}}[(n k+1)+(n k+2)+\ldots+(n k+n)] \\ &=33 \cdot \lim _{n \righ...
JEE Main 2022 (Online) 30th June Morning Shift
Let $$f(t) = \int\limits_0^t {{e^{{x^3}}}\left( {{{{x^8}} \over {{{({x^6} + 2{x^3} + 2)}^2}}}} \right)dx} $$. If $$f(1) + f'(1) = \alpha e - {1 \over ...
JEE Main 2022 (Online) 26th June Evening Shift
The integral $${{24} \over \pi }\int_0^{\sqrt 2 } {{{(2 - {x^2})dx} \over {(2 + {x^2})\sqrt {4 + {x^4}} }}} $$ is equal to ____________.
JEE Main 2022 (Online) 26th June Morning Shift
Let f(x) = max {|x + 1|, |x + 2|, ....., |x + 5|}. Then $$\int\limits_{ - 6}^0 {f(x)dx} $$ is equal to __________.
JEE Main 2022 (Online) 26th June Morning Shift
The value of the integral $${{48} \over {{\pi ^4}}}\int\limits_0^\pi {\left( {{{3\pi {x^2}} \over 2} - {x^3}} \right){{\sin x} \over {1 + {{\cos }^2}...
JEE Main 2022 (Online) 25th June Evening Shift
The value of b > 3 for which $$12\int\limits_3^b {{1 \over {({x^2} - 1)({x^2} - 4)}}dx = {{\log }_e}\left( {{{49} \over {40}}} \right)} $$, is equal t...
JEE Main 2022 (Online) 24th June Morning Shift
Let $$f(\theta ) = \sin \theta + \int\limits_{ - \pi /2}^{\pi /2} {(\sin \theta + t\cos \theta )f(t)dt} $$. Then the value of $$\left| {\int_0^{\pi ...
JEE Main 2022 (Online) 24th June Morning Shift
Let $$\mathop {Max}\limits_{0\, \le x\, \le 2} \left\{ {{{9 - {x^2}} \over {5 - x}}} \right\} = \alpha $$ and $$\mathop {Min}\limits_{0\, \le x\, \le ...
JEE Main 2021 (Online) 31st August Morning Shift
Let [t] denote the greatest integer $$\le$$ t. Then the value of $$8.\int\limits_{ - {1 \over 2}}^1 {([2x] + |x|)dx} $$ is ___________.
JEE Main 2021 (Online) 31st August Morning Shift
If $$x\phi (x) = \int\limits_5^x {(3{t^2} - 2\phi '(t))dt} $$, x > $$-$$2, and $$\phi$$(0) = 4, then $$\phi$$(2) is __________.
JEE Main 2021 (Online) 27th July Evening Shift
If $$\int_0^\pi {({{\sin }^3}x){e^{ - {{\sin }^2}x}}dx = \alpha - {\beta \over e}\int_0^1 {\sqrt t {e^t}dt} } $$, then $$\alpha$$ + $$\beta$$ is eq...
JEE Main 2021 (Online) 27th July Morning Shift
Let the domain of the function$$f(x) = {\log _4}\left( {{{\log }_5}\left( {{{\log }_3}(18x - {x^2} - 77)} \right)} \right)$$ be (a, b). Then the value...
JEE Main 2021 (Online) 27th July Morning Shift
Let $$F:[3,5] \to R$$ be a twice differentiable function on (3, 5) such that $$F(x) = {e^{ - x}}\int\limits_3^x {(3{t^2} + 2t + 4F'(t))dt} $$. If $$F'...
JEE Main 2021 (Online) 18th March Evening Shift
Let P(x) be a real polynomial of degree 3 which vanishes at x = $$-$$3. Let P(x) have local minima at x = 1, local maxima at x = $$-$$1 and $$\int\lim...
JEE Main 2021 (Online) 18th March Morning Shift
Let f(x) and g(x) be two functions satisfying f(x2) + g(4 $$-$$ x) = 4x3 and g(4 $$-$$ x) + g(x) = 0, then the value of $$\int\limits_{ - 4}^4 {f{{(x)...
JEE Main 2021 (Online) 17th March Evening Shift
Let $${I_n} = \int_1^e {{x^{19}}{{(\log |x|)}^n}} dx$$, where n$$\in$$N. If (20)I10 = $$\alpha$$I9 + $$\beta$$I8, for natural numbers $$\alpha$$ and $...
JEE Main 2021 (Online) 17th March Morning Shift
If [ . ] represents the greatest integer function, then the value of $$\left| {\int\limits_0^{\sqrt {{\pi \over 2}} } {\left[ {[{x^2}] - \cos x} \rig...
JEE Main 2021 (Online) 16th March Morning Shift
Let f : R $$ \to $$ R be a continuous function such that f(x) + f(x + 1) = 2, for all x$$\in$$R. If $${I_1} = \int\limits_0^8 {f(x)dx} $$ and $${I_2} ...
JEE Main 2021 (Online) 16th March Morning Shift
Let f : (0, 2) $$ \to $$ R be defined as f(x) = log2$$\left( {1 + \tan \left( {{{\pi x} \over 4}} \right)} \right)$$. Then, $$\mathop {\lim }\limits_{...
JEE Main 2021 (Online) 16th March Morning Shift
If the normal to the curve y(x) = $$\int\limits_0^x {(2{t^2} - 15t + 10)dt} $$ at a point (a, b) is parallel to the line x + 3y = $$-$$5, a > 1, th...
JEE Main 2021 (Online) 26th February Evening Shift
If $${I_{m,n}} = \int\limits_0^1 {{x^{m - 1}}{{(1 - x)}^{n - 1}}dx} $$, for m, $$n \ge 1$$, and $$\int\limits_0^1 {{{{x^{m - 1}} + {x^{n - 1}}} \over ...
JEE Main 2021 (Online) 26th February Morning Shift
The value of the integral $$\int\limits_0^\pi {|{{\sin }\,}2x|dx} $$ is ___________.
JEE Main 2021 (Online) 25th February Evening Shift
The value of $$\int\limits_{ - 2}^2 {|3{x^2} - 3x - 6|dx} $$ is ___________.
JEE Main 2021 (Online) 24th February Morning Shift
If $$\int\limits_{ - a}^a {\left( {\left| x \right| + \left| {x - 2} \right|} \right)} dx = 22$$, (a > 2) and [x] denotes the greatest integer $$ \...
JEE Main 2020 (Online) 4th September Evening Slot
Let {x} and [x] denote the fractional part of x and the greatest integer $$ \le $$ x respectively of a real number x. If $$\int_0^n {\left\{ x \right\...
JEE Main 2020 (Online) 2nd September Evening Slot
Let [t] denote the greatest integer less than or equal to t. Then the value of $$\int\limits_1^2 {\left| {2x - \left[ {3x} \right]} \right|dx} $$ is _...
JEE Main 2020 (Online) 2nd September Morning Slot
The integral $$\int\limits_0^2 {\left| {\left| {x - 1} \right| - x} \right|dx} $$ is equal to______.

MCQ (More than One Correct Answer)

AIEEE 2012
If $$g\left( x \right) = \int\limits_0^x {\cos 4t\,dt,} $$ then $$g\left( {x + \pi } \right)$$ equals
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12