# Definite Integration · Mathematics · JEE Main

Start Practice

JEE Main 2024 (Online) 9th April Evening Shift
The integral $$\int_\limits{1 / 4}^{3 / 4} \cos \left(2 \cot ^{-1} \sqrt{\frac{1-x}{1+x}}\right) d x$$ is equal to
JEE Main 2024 (Online) 9th April Evening Shift
$$\lim _\limits{x \rightarrow \frac{\pi}{2}}\left(\frac{\int_{x^3}^{(\pi / 2)^3}\left(\sin \left(2 t^{1 / 3}\right)+\cos \left(t^{1 / 3}\right)\right)... JEE Main 2024 (Online) 9th April Evening Shift The value of the integral$$\int_\limits{-1}^2 \log _e\left(x+\sqrt{x^2+1}\right) d x$$is JEE Main 2024 (Online) 8th April Evening Shift Let$$\int_\limits\alpha^{\log _e 4} \frac{\mathrm{d} x}{\sqrt{\mathrm{e}^x-1}}=\frac{\pi}{6}$$. Then$$\mathrm{e}^\alpha$$and$$\mathrm{e}^{-\alpha}...
JEE Main 2024 (Online) 8th April Morning Shift
The value of $$k \in \mathbb{N}$$ for which the integral $$I_n=\int_0^1\left(1-x^k\right)^n d x, n \in \mathbb{N}$$, satisfies $$147 I_{20}=148 I_{21}... JEE Main 2024 (Online) 6th April Morning Shift$$\int_\limits0^{\pi / 4} \frac{\cos ^2 x \sin ^2 x}{\left(\cos ^3 x+\sin ^3 x\right)^2} d x \text { is equal to }$$JEE Main 2024 (Online) 5th April Evening Shift Let$$\beta(\mathrm{m}, \mathrm{n})=\int_\limits0^1 x^{\mathrm{m}-1}(1-x)^{\mathrm{n}-1} \mathrm{~d} x, \mathrm{~m}, \mathrm{n}>0$$. If$$\int_\limits...
JEE Main 2024 (Online) 5th April Morning Shift
The integral $$\int_\limits0^{\pi / 4} \frac{136 \sin x}{3 \sin x+5 \cos x} \mathrm{~d} x$$ is equal to :
JEE Main 2024 (Online) 5th April Morning Shift
The value of $$\int_\limits{-\pi}^\pi \frac{2 y(1+\sin y)}{1+\cos ^2 y} d y$$ is :
JEE Main 2024 (Online) 4th April Evening Shift
Let $$f(x)=\int_0^x\left(t+\sin \left(1-e^t\right)\right) d t, x \in \mathbb{R}$$. Then, $$\lim _\limits{x \rightarrow 0} \frac{f(x)}{x^3}$$ is equal ...
JEE Main 2024 (Online) 4th April Evening Shift
If the value of the integral $$\int\limits_{-1}^1 \frac{\cos \alpha x}{1+3^x} d x$$ is $$\frac{2}{\pi}$$.Then, a value of $$\alpha$$ is
JEE Main 2024 (Online) 4th April Morning Shift
$$\text { Let } f(x)=\left\{\begin{array}{lr} -2, & -2 \leq x \leq 0 \\ x-2, & 0... JEE Main 2024 (Online) 1st February Evening Shift If \int\limits_0^{\frac{\pi}{3}} \cos ^4 x \mathrm{~d} x=\mathrm{a} \pi+\mathrm{b} \sqrt{3}, where \mathrm{a} and \mathrm{b} are rational number... JEE Main 2024 (Online) 1st February Evening Shift The value of \int\limits_0^1\left(2 x^3-3 x^2-x+1\right)^{\frac{1}{3}} \mathrm{~d} x is equal to : JEE Main 2024 (Online) 1st February Morning Shift The value of the integral \int\limits_0^{\pi / 4} \frac{x \mathrm{~d} x}{\sin ^4(2 x)+\cos ^4(2 x)} equals : JEE Main 2024 (Online) 31st January Evening Shift Let$$f, g:(0, \infty) \rightarrow \mathbb{R}$$be two functions defined by$$f(x)=\int\limits_{-x}^x\left(|t|-t^2\right) e^{-t^2} d t$$and$$g(x)=\i...
JEE Main 2024 (Online) 30th January Evening Shift
Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined by $$f(x)=\frac{x}{\left(1+x^4\right)^{1 / 4}}$$, and $$g(x)=f(f(f(f(x))))$$. Then,...
JEE Main 2024 (Online) 30th January Evening Shift
Let $$y=f(x)$$ be a thrice differentiable function in $$(-5,5)$$. Let the tangents to the curve $$y=f(x)$$ at $$(1, f(1))$$ and $$(3, f(3))$$ make ang...
JEE Main 2024 (Online) 30th January Evening Shift
Let $$a$$ and $$b$$ be real constants such that the function $$f$$ defined by $$f(x)=\left\{\begin{array}{ll}x^2+3 x+a & , x \leq 1 \\ b x+2 & , x>1\e... JEE Main 2024 (Online) 30th January Evening Shift Let$$\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$$be defined as$$f(x)=a e^{2 x}+b e^x+c x$$. If$$f(0)=-1, f^{\prime}\left(\log _e 2\right)=21$$... JEE Main 2024 (Online) 30th January Morning Shift The value of$$\lim _\limits{n \rightarrow \infty} \sum_\limits{k=1}^n \frac{n^3}{\left(n^2+k^2\right)\left(n^2+3 k^2\right)}$$is : JEE Main 2024 (Online) 30th January Morning Shift Let$$f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbf{R}$$be a differentiable function such that$$f(0)=\frac{1}{2}$$. If the$$\lim...
JEE Main 2024 (Online) 29th January Morning Shift
$$\mathop {\lim }\limits_{x \to {\pi \over 2}} \left( {{1 \over {{{\left( {x - {\pi \over 2}} \right)}^2}}}\int\limits_{{x^3}}^{{{\left( {{\pi \ove... JEE Main 2024 (Online) 29th January Morning Shift If the value of the integral$$\int_\limits{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{x^2 \cos x}{1+\pi^x}+\frac{1+\sin ^2 x}{1+e^{\sin x^{2123}}}\ri...
JEE Main 2024 (Online) 27th January Evening Shift
For $$0 JEE Main 2024 (Online) 27th January Morning Shift If \int\limits_0^1 \frac{1}{\sqrt{3+x}+\sqrt{1+x}} \mathrm{~d} x=\mathrm{a}+\mathrm{b} \sqrt{2}+\mathrm{c} \sqrt{3}, where \mathrm{a}, \mathrm{b}, ... JEE Main 2024 (Online) 27th January Morning Shift If (a, b) be the orthocentre of the triangle whose vertices are (1,2),(2,3) and (3,1), and \mathrm{I}_1=\int\limits_{\mathrm{a}}^{\mathrm{b}} x... JEE Main 2023 (Online) 15th April Morning Shift If \int\limits_{0}^{1} \frac{1}{\left(5+2 x-2 x^{2}\right)\left(1+e^{(2-4 x)}\right)} d x=\frac{1}{\alpha} \log _{e}\left(\frac{\alpha+1}{\beta}\righ... JEE Main 2023 (Online) 13th April Evening Shift The value of$${{{e^{ - {\pi \over 4}}} + \int\limits_0^{{\pi \over 4}} {{e^{ - x}}{{\tan }^{50}}xdx} } \over {\int\limits_0^{{\pi \over 4}} {{e^{ ...
JEE Main 2023 (Online) 13th April Morning Shift
Among (S1): $$\lim_\limits{n \rightarrow \infty} \frac{1}{n^{2}}(2+4+6+\ldots \ldots+2 n)=1$$ (S2) : $$\lim_\limits{n \rightarrow \infty} \frac{1}{n^{... JEE Main 2023 (Online) 13th April Morning Shift$$\int_\limits{0}^{\infty} \frac{6}{e^{3 x}+6 e^{2 x}+11 e^{x}+6} d x=$$JEE Main 2023 (Online) 11th April Evening Shift If$$f: \mathbb{R} \rightarrow \mathbb{R}$$be a continuous function satisfying$$\int_\limits{0}^{\frac{\pi}{2}} f(\sin 2 x) \sin x d x+\alpha \int_\...
JEE Main 2023 (Online) 11th April Evening Shift
Let the function $$f:[0,2] \rightarrow \mathbb{R}$$ be defined as $$f(x)= \begin{cases}e^{\min \left\{x^{2}, x-[x]\right\},} & x \in[0,1) \\ e^{\left[... JEE Main 2023 (Online) 11th April Morning Shift The value of the integral$$\int_\limits{-\log _{e} 2}^{\log _{e} 2} e^{x}\left(\log _{e}\left(e^{x}+\sqrt{1+e^{2 x}}\right)\right) d x$$is equal to ... JEE Main 2023 (Online) 10th April Evening Shift Let$$f$$be a continuous function satisfying$$\int_\limits{0}^{t^{2}}\left(f(x)+x^{2}\right) d x=\frac{4}{3} t^{3}, \forall t > 0$$. Then$$f\left(...
JEE Main 2023 (Online) 6th April Evening Shift
Let $$f(x)$$ be a function satisfying $$f(x)+f(\pi-x)=\pi^{2}, \forall x \in \mathbb{R}$$. Then $$\int_\limits{0}^{\pi} f(x) \sin x d x$$ is equal to ...
JEE Main 2023 (Online) 6th April Evening Shift
$$\lim _\limits{n \rightarrow \infty}\left\{\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)\left(2^{\frac{1}{2}}-2^{\frac{1}{5}}\right) \ldots . .\left(2... JEE Main 2023 (Online) 6th April Morning Shift Let$$5 f(x)+4 f\left(\frac{1}{x}\right)=\frac{1}{x}+3, x > 0$$. Then$$18 \int_\limits{1}^{2} f(x) d x$$is equal to : JEE Main 2023 (Online) 1st February Evening Shift The value of the integral$$\int\limits_{ - {\pi \over 4}}^{{\pi \over 4}} {{{x + {\pi \over 4}} \over {2 - \cos 2x}}dx} $$is : JEE Main 2023 (Online) 1st February Morning Shift$$\mathop {\lim }\limits_{n \to \infty } \left[ {{1 \over {1 + n}} + {1 \over {2 + n}} + {1 \over {3 + n}}\, + \,...\, + \,{1 \over {2n}}} \right]$$i... JEE Main 2023 (Online) 31st January Evening Shift Let \alpha>0. If \int\limits_0^\alpha \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} \mathrm{~d} x=\frac{16+20 \sqrt{2}}{15}, then \alpha is equal to : JEE Main 2023 (Online) 31st January Evening Shift If \phi(x)=\frac{1}{\sqrt{x}} \int\limits_{\frac{\pi}{4}}^x\left(4 \sqrt{2} \sin t-3 \phi^{\prime}(t)\right) d t, x>0, then \emptyset^{\prime}\lef... JEE Main 2023 (Online) 31st January Morning Shift Let$$\alpha \in (0,1)$$and$$\beta = {\log _e}(1 - \alpha )$$. Let$${P_n}(x) = x + {{{x^2}} \over 2} + {{{x^3}} \over 3}\, + \,...\, + \,{{{x^n}}...
JEE Main 2023 (Online) 31st January Morning Shift
The value of $$\int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{(2+3 \sin x)}{\sin x(1+\cos x)} d x$$ is equal to :
JEE Main 2023 (Online) 30th January Evening Shift
$\lim\limits_{n \rightarrow \infty} \frac{3}{n}\left\{4+\left(2+\frac{1}{n}\right)^2+\left(2+\frac{2}{n}\right)^2+\ldots+\left(3-\frac{1}{n}\right)^2\... JEE Main 2023 (Online) 30th January Morning Shift If [t] denotes the greatest integer $$\le \mathrm{t}$$, then the value of $${{3(e - 1)} \over e}\int\limits_1^2 {{x^2}{e^{[x] + [{x^3}]}}dx}$$ is :... JEE Main 2023 (Online) 29th January Evening Shift The value of the integral $$\int_1^2 {\left( {{{{t^4} + 1} \over {{t^6} + 1}}} \right)dt}$$ is JEE Main 2023 (Online) 29th January Evening Shift The value of the integral $$\int\limits_{1/2}^2 {{{{{\tan }^{ - 1}}x} \over x}dx}$$ is equal to : JEE Main 2023 (Online) 29th January Morning Shift Let $$f(x) = x + {a \over {{\pi ^2} - 4}}\sin x + {b \over {{\pi ^2} - 4}}\cos x,x \in R$$ be a function which satisfies $$f(x) = x + \int\limits_0^{\... JEE Main 2023 (Online) 25th January Evening Shift The integral$$16\int\limits_1^2 {{{dx} \over {{x^3}{{\left( {{x^2} + 2} \right)}^2}}}} $$is equal to JEE Main 2023 (Online) 25th January Morning Shift The minimum value of the function$$f(x) = \int\limits_0^2 {{e^{|x - t|}}dt} $$is : JEE Main 2023 (Online) 24th January Evening Shift$$\int\limits_{{{3\sqrt 2 } \over 4}}^{{{3\sqrt 3 } \over 4}} {{{48} \over {\sqrt {9 - 4{x^2}} }}dx} $$is equal to : JEE Main 2022 (Online) 29th July Evening Shift If$$[t]$$denotes the greatest integer$$\leq t$$, then the value of$$\int_{0}^{1}\left[2 x-\left|3 x^{2}-5 x+2\right|+1\right] \mathrm{d} x$$is :... JEE Main 2022 (Online) 29th July Morning Shift The integral$$\int\limits_{0}^{\frac{\pi}{2}} \frac{1}{3+2 \sin x+\cos x} \mathrm{~d} x$$is equal to : JEE Main 2022 (Online) 29th July Morning Shift If$$f(\alpha)=\int\limits_{1}^{\alpha} \frac{\log _{10} \mathrm{t}}{1+\mathrm{t}} \mathrm{dt}, \alpha>0$$, then$$f\left(\mathrm{e}^{3}\right)+f\left... JEE Main 2022 (Online) 28th July Evening Shift Let $$I_{n}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t, n=1,2,3, \ldots .$$ Then : JEE Main 2022 (Online) 28th July Morning Shift The minimum value of the twice differentiable function $$f(x)=\int\limits_{0}^{x} \mathrm{e}^{x-\mathrm{t}} f^{\prime}(\mathrm{t}) \mathrm{dt}-\left(x... JEE Main 2022 (Online) 27th July Evening Shift Let$$f(x)=2+|x|-|x-1|+|x+1|, x \in \mathbf{R}$$. Consider$$(\mathrm{S} 1): f^{\prime}\left(-\frac{3}{2}\right)+f^{\prime}\left(-\frac{1}{2}\right)+f... JEE Main 2022 (Online) 27th July Evening Shift $$\int\limits_{0}^{2}\left(\left|2 x^{2}-3 x\right|+\left[x-\frac{1}{2}\right]\right) \mathrm{d} x$$, where [t] is the greatest integer function, is e... JEE Main 2022 (Online) 27th July Morning Shift Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined as $$f(x)=a \sin \left(\frac{\pi[x]}{2}\right)+[2-x], a \in \mathbb{R}$$ where $$[t... JEE Main 2022 (Online) 27th July Morning Shift Let$$ I=\int_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x $$. Then JEE Main 2022 (Online) 27th July Morning Shift Let a function$$f: \mathbb{R} \rightarrow \mathbb{R}$$be defined as :$$f(x)= \begin{cases}\int\limits_{0}^{x}(5-|t-3|) d t, & x>4 \\ x^{2}+b x & , ... JEE Main 2022 (Online) 26th July Evening Shift $$\int\limits_{0}^{20 \pi}(|\sin x|+|\cos x|)^{2} d x \text { is equal to }$$ JEE Main 2022 (Online) 26th July Morning Shift If $$a = \mathop {\lim }\limits_{n \to \infty } \sum\limits_{k = 1}^n {{{2n} \over {{n^2} + {k^2}}}}$$ and $$f(x) = \sqrt {{{1 - \cos x} \over {1 + \... JEE Main 2022 (Online) 25th July Evening Shift$$\mathop {\lim }\limits_{n \to \infty } {1 \over {{2^n}}}\left( {{1 \over {\sqrt {1 - {1 \over {{2^n}}}} }} + {1 \over {\sqrt {1 - {2 \over {{2^n}}}}... JEE Main 2022 (Online) 25th July Evening Shift Let $$[t]$$ denote the greatest integer less than or equal to $$t$$. Then the value of the integral $$\int_{-3}^{101}\left([\sin (\pi x)]+e^{[\cos (2 ... JEE Main 2022 (Online) 25th July Morning Shift For any real number$$x$$, let$$[x]$$denote the largest integer less than equal to$$x$$. Let$$f$$be a real valued function defined on the interva... JEE Main 2022 (Online) 30th June Morning Shift$$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{r \over {2{r^2} - 7rn + 6{n^2}}}} $$is equal to : JEE Main 2022 (Online) 29th June Evening Shift Let f be a real valued continuous function on [0, 1] and$$f(x) = x + \int\limits_0^1 {(x - t)f(t)dt} $$. Then, which of the following points (x, y) l... JEE Main 2022 (Online) 29th June Evening Shift If$$\int\limits_0^2 {\left( {\sqrt {2x} - \sqrt {2x - {x^2}} } \right)dx = \int\limits_0^1 {\left( {1 - \sqrt {1 - {y^2}} - {{{y^2}} \over 2}} \rig... JEE Main 2022 (Online) 29th June Morning Shift Let $$f:R \to R$$ be a function defined by : $$f(x) = \left\{ {\matrix{ {\max \,\{ {t^3} - 3t\} \,t \le x} & ; & {x \le 2} \cr {{x^2} + 2x - 6... JEE Main 2022 (Online) 29th June Morning Shift$$\int_0^5 {\cos \left( {\pi \left( {x - \left[ {{x \over 2}} \right]} \right)} \right)dx} $$, where [t] denotes greatest integer less than or equal t... JEE Main 2022 (Online) 28th June Evening Shift Let f : R$$\to$$R be a differentiable function such that$$f\left( {{\pi \over 4}} \right) = \sqrt 2 ,\,f\left( {{\pi \over 2}} \right) = 0$$and ... JEE Main 2022 (Online) 28th June Evening Shift Let f : R$$\to$$R be a continuous function satisfying f(x) + f(x + k) = n, for all x$$\in$$R where k > 0 and n is a positive integer. If$${I_1} ... JEE Main 2022 (Online) 28th June Morning Shift Let [t] denote the greatest integer less than or equal to t. Then, the value of the integral $$\int\limits_0^1 {[ - 8{x^2} + 6x - 1]dx}$$ is equal to... JEE Main 2022 (Online) 27th June Evening Shift If m and n respectively are the number of local maximum and local minimum points of the function $$f(x) = \int\limits_0^{{x^2}} {{{{t^2} - 5t + 4} \ov... JEE Main 2022 (Online) 27th June Evening Shift Let f be a differentiable function in$$\left( {0,{\pi \over 2}} \right)$$. If$$\int\limits_{\cos x}^1 {{t^2}\,f(t)dt = {{\sin }^3}x + \cos x} $$, t... JEE Main 2022 (Online) 27th June Evening Shift The integral$$\int\limits_0^1 {{1 \over {{7^{\left[ {{1 \over x}} \right]}}}}dx} $$, where [ . ] denotes the greatest integer function, is equal to... JEE Main 2022 (Online) 27th June Morning Shift The value of the integral$$\int\limits_{ - 2}^2 {{{|{x^3} + x|} \over {({e^{x|x|}} + 1)}}dx} $$is equal to : JEE Main 2022 (Online) 25th June Evening Shift If$${b_n} = \int_0^{{\pi \over 2}} {{{{{\cos }^2}nx} \over {\sin x}}dx,\,n \in N} $$, then JEE Main 2022 (Online) 25th June Morning Shift The value of$$\int\limits_0^\pi {{{{e^{\cos x}}\sin x} \over {(1 + {{\cos }^2}x)({e^{\cos x}} + {e^{ - \cos x}})}}dx} $$is equal to: JEE Main 2022 (Online) 24th June Evening Shift The value of the integral$$\int\limits_{ - \pi /2}^{\pi /2} {{{dx} \over {(1 + {e^x})({{\sin }^6}x + {{\cos }^6}x)}}} $$is equal to JEE Main 2022 (Online) 24th June Evening Shift$$\mathop {\lim }\limits_{n \to \infty } \left( {{{{n^2}} \over {({n^2} + 1)(n + 1)}} + {{{n^2}} \over {({n^2} + 4)(n + 2)}} + {{{n^2}} \over {({n^2} ... JEE Main 2021 (Online) 1st September Evening Shift Let f : R $$\to$$ R be a continuous function. Then $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{{\pi \over 4}\int\limits_2^{{{\sec }^2}x} {f(x)\... JEE Main 2021 (Online) 1st September Evening Shift Let$${J_{n,m}} = \int\limits_0^{{1 \over 2}} {{{{x^n}} \over {{x^m} - 1}}dx} $$,$$\forall$$n > m and n, m$$\in$$N. Consider a matrix$$A = {[{... JEE Main 2021 (Online) 1st September Evening Shift The function f(x), that satisfies the condition $$f(x) = x + \int\limits_0^{\pi /2} {\sin x.\cos y\,f(y)\,dy}$$, is : JEE Main 2021 (Online) 31st August Evening Shift If [x] is the greatest integer $$\le$$ x, then $${\pi ^2}\int\limits_0^2 {\left( {\sin {{\pi x} \over 2}} \right)(x - [x]} {)^{[x]}}dx$$ is equal to :... JEE Main 2021 (Online) 31st August Morning Shift Let f be a non-negative function in [0, 1] and twice differentiable in (0, 1). If $$\int_0^x {\sqrt {1 - {{(f'(t))}^2}} dt = \int_0^x {f(t)dt} }$$,$...
JEE Main 2021 (Online) 27th August Evening Shift
The value of the integral $$\int\limits_0^1 {{{\sqrt x dx} \over {(1 + x)(1 + 3x)(3 + x)}}}$$ is :
JEE Main 2021 (Online) 27th August Morning Shift
If $${U_n} = \left( {1 + {1 \over {{n^2}}}} \right)\left( {1 + {{{2^2}} \over {{n^2}}}} \right)^2.....\left( {1 + {{{n^2}} \over {{n^2}}}} \right)^n$$...
JEE Main 2021 (Online) 27th August Morning Shift
$$\int\limits_6^{16} {{{{{\log }_e}{x^2}} \over {{{\log }_e}{x^2} + {{\log }_e}({x^2} - 44x + 484)}}dx}$$ is equal to :
JEE Main 2021 (Online) 26th August Evening Shift
If the value of the integral $$\int\limits_0^5 {{{x + [x]} \over {{e^{x - [x]}}}}dx = \alpha {e^{ - 1}} + \beta }$$, where $$\alpha$$, $$\beta$$ $$\i... JEE Main 2021 (Online) 26th August Evening Shift The value of$$\int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {\left( {{{1 + {{\sin }^2}x} \over {1 + {\pi ^{\sin x}}}}} \right)} \,dx$$is JEE Main 2021 (Online) 26th August Morning Shift The value of$$\int\limits_{{{ - 1} \over {\sqrt 2 }}}^{{1 \over {\sqrt 2 }}} {{{\left( {{{\left( {{{x + 1} \over {x - 1}}} \right)}^2} + {{\left( {{{...
JEE Main 2021 (Online) 26th August Morning Shift
The value of $$\mathop {\lim }\limits_{n \to \infty } {1 \over n}\sum\limits_{r = 0}^{2n - 1} {{{{n^2}} \over {{n^2} + 4{r^2}}}}$$ is :
JEE Main 2021 (Online) 27th July Evening Shift
Let f : (a, b) $$\to$$ R be twice differentiable function such that $$f(x) = \int_a^x {g(t)dt}$$ for a differentiable function g(x). If f(x) = 0 has ...
JEE Main 2021 (Online) 27th July Morning Shift
The value of $$\mathop {\lim }\limits_{n \to \infty } {1 \over n}\sum\limits_{j = 1}^n {{{(2j - 1) + 8n} \over {(2j - 1) + 4n}}}$$ is equal to :
JEE Main 2021 (Online) 27th July Morning Shift
The value of the definite integral$$\int\limits_{ - {\pi \over 4}}^{{\pi \over 4}} {{{dx} \over {(1 + {e^{x\cos x}})({{\sin }^4}x + {{\cos }^4}x)}}}... JEE Main 2021 (Online) 25th July Evening Shift If$$f(x) = \left\{ {\matrix{ {\int\limits_0^x {\left( {5 + \left| {1 - t} \right|} \right)dt,} } & {x > 2} \cr {5x + 1,} & {x \le ...
JEE Main 2021 (Online) 25th July Evening Shift
The value of the integral $$\int\limits_{ - 1}^1 {\log \left( {x + \sqrt {{x^2} + 1} } \right)dx}$$ is :
JEE Main 2021 (Online) 25th July Morning Shift
The value of the definite integral $$\int\limits_{\pi /24}^{5\pi /24} {{{dx} \over {1 + \root 3 \of {\tan 2x} }}}$$ is :
JEE Main 2021 (Online) 25th July Morning Shift
Let $$f:[0,\infty ) \to [0,\infty )$$ be defined as $$f(x) = \int_0^x {[y]dy}$$where [x] is the greatest integer less than or equal to x. Which of th...
JEE Main 2021 (Online) 22th July Evening Shift
If $$\int\limits_0^{100\pi } {{{{{\sin }^2}x} \over {{e^{\left( {{x \over \pi } - \left[ {{x \over \pi }} \right]} \right)}}}}dx = {{\alpha {\pi ^3}} ... JEE Main 2021 (Online) 20th July Evening Shift If [x] denotes the greatest integer less than or equal to x, then the value of the integral$$\int_{ - \pi /2}^{\pi /2} {[[x] - \sin x]dx} $$is equal... JEE Main 2021 (Online) 20th July Evening Shift If the real part of the complex number$${(1 - \cos \theta + 2i\sin \theta )^{ - 1}}$$is$${1 \over 5}$$for$$\theta \in (0,\pi )$$, then the valu... JEE Main 2021 (Online) 20th July Evening Shift Let$$g(t) = \int_{ - \pi /2}^{\pi /2} {\cos \left( {{\pi \over 4}t + f(x)} \right)} dx$$, where$$f(x) = {\log _e}\left( {x + \sqrt {{x^2} + 1} } \r...
JEE Main 2021 (Online) 20th July Morning Shift
Let a be a positive real number such that $$\int_0^a {{e^{x - [x]}}} dx = 10e - 9$$ where [ x ] is the greatest integer less than or equal to x. Then ...
JEE Main 2021 (Online) 20th July Morning Shift
The value of the integral $$\int\limits_{ - 1}^1 {{{\log }_e}(\sqrt {1 - x} + \sqrt {1 + x} )dx}$$ is equal to:
JEE Main 2021 (Online) 18th March Evening Shift
Let g(x) = $$\int_0^x {f(t)dt}$$, where f is continuous function in [ 0, 3 ] such that $${1 \over 3}$$ $$\le$$ f(t) $$\le$$ 1 for all t$$\in$$ [0...
JEE Main 2021 (Online) 17th March Evening Shift
Let f : R $$\to$$ R be defined as f(x) = e$$-$$xsinx. If F : [0, 1] $$\to$$ R is a differentiable function with that F(x) = $$\int_0^x {f(t)dt}$$...
JEE Main 2021 (Online) 17th March Evening Shift
If the integral $$\int_0^{10} {{{[\sin 2\pi x]} \over {{e^{x - [x]}}}}} dx = \alpha {e^{ - 1}} + \beta {e^{ - {1 \over 2}}} + \gamma$$, where $$\alp... JEE Main 2021 (Online) 17th March Morning Shift Which of the following statements is correct for the function g($$\alpha$$) for$$\alpha\in$$R such that$$g(\alpha ) = \int\limits_{{\pi \over...
JEE Main 2021 (Online) 16th March Evening Shift
Consider the integral $$I = \int_0^{10} {{{[x]{e^{[x]}}} \over {{e^{x - 1}}}}dx}$$, where [x] denotes the greatest integer less than or equal to x. T...
JEE Main 2021 (Online) 16th March Evening Shift
Let P(x) = x2 + bx + c be a quadratic polynomial with real coefficients such that $$\int_0^1 {P(x)dx}$$ = 1 and P(x) leaves remainder 5 when it is di...
JEE Main 2021 (Online) 26th February Evening Shift
Let $$f(x) = \int\limits_0^x {{e^t}f(t)dt + {e^x}}$$ be a differentiable function for all x$$\in$$R. Then f(x) equals :
JEE Main 2021 (Online) 26th February Evening Shift
For x > 0, if $$f(x) = \int\limits_1^x {{{{{\log }_e}t} \over {(1 + t)}}dt}$$, then $$f(e) + f\left( {{1 \over e}} \right)$$ is equal to :
JEE Main 2021 (Online) 26th February Morning Shift
The value of $$\int\limits_{ - \pi /2}^{\pi /2} {{{{{\cos }^2}x} \over {1 + {3^x}}}} dx$$ is :
JEE Main 2021 (Online) 26th February Morning Shift
The value of $$\sum\limits_{n = 1}^{100} {\int\limits_{n - 1}^n {{e^{x - [x]}}dx} }$$, where [ x ] is the greatest integer $$\le$$ x, is :
JEE Main 2021 (Online) 25th February Evening Shift
If $${I_n} = \int\limits_{{\pi \over 4}}^{{\pi \over 2}} {{{\cot }^n}x\,dx}$$, then :
JEE Main 2021 (Online) 25th February Evening Shift
$$\mathop {\lim }\limits_{n \to \infty } \left[ {{1 \over n} + {n \over {{{(n + 1)}^2}}} + {n \over {{{(n + 2)}^2}}} + ........ + {n \over {{{(2n + 1)... JEE Main 2021 (Online) 25th February Morning Shift The value of$$\int\limits_{ - 1}^1 {{x^2}{e^{[{x^3}]}}} dx$$, where [ t ] denotes the greatest integer$$ \le $$t, is : JEE Main 2021 (Online) 24th February Evening Shift The value of the integral,$$\int\limits_1^3 {[{x^2} - 2x - 2]dx} $$, where [x] denotes the greatest integer less than or equal to x, is : JEE Main 2021 (Online) 24th February Evening Shift Let f(x) be a differentiable function defined on [0, 2] such that f'(x) = f'(2$$-$$x) for all x$$ \in $$(0, 2), f(0) = 1 and f(2) = e2. Then the va... JEE Main 2021 (Online) 24th February Evening Shift Let f be a twice differentiable function defined on R such that f(0) = 1, f'(0) = 2 and f'(x)$$ \ne $$0 for all x$$ \in $$R. If$$\left| {\matrix{...
JEE Main 2021 (Online) 24th February Morning Shift
$$\mathop {\lim }\limits_{x \to 0} {{\int\limits_0^{{x^2}} {\left( {\sin \sqrt t } \right)dt} } \over {{x^3}}}$$ is equal to :
JEE Main 2020 (Online) 6th September Evening Slot
The integral $$\int\limits_1^2 {{e^x}.{x^x}\left( {2 + {{\log }_e}x} \right)} dx$$ equals :
JEE Main 2020 (Online) 6th September Morning Slot
$$\mathop {\lim }\limits_{x \to 1} \left( {{{\int\limits_0^{{{\left( {x - 1} \right)}^2}} {t\cos \left( {{t^2}} \right)dt} } \over {\left( {x - 1} \ri... JEE Main 2020 (Online) 6th September Morning Slot If I1 =$$\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}} dx$$and I2 =$$\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}} dx$$suc... JEE Main 2020 (Online) 5th September Morning Slot The value of$$\int\limits_{{{ - \pi } \over 2}}^{{\pi \over 2}} {{1 \over {1 + {e^{\sin x}}}}dx} $$is: JEE Main 2020 (Online) 4th September Evening Slot The integral$$\int\limits_{{\pi \over 6}}^{{\pi \over 3}} {{{\tan }^3}x.{{\sin }^2}3x\left( {2{{\sec }^2}x.{{\sin }^2}3x + 3\tan x.\sin 6x} \right)...
JEE Main 2020 (Online) 4th September Morning Slot
Let $$f(x) = \left| {x - 2} \right|$$ and g(x) = f(f(x)), $$x \in \left[ {0,4} \right]$$. Then $$\int\limits_0^3 {\left( {g(x) - f(x)} \right)} dx$$ i...
JEE Main 2020 (Online) 3rd September Evening Slot
If the value of the integral $$\int\limits_0^{{1 \over 2}} {{{{x^2}} \over {{{\left( {1 - {x^2}} \right)}^{{3 \over 2}}}}}} dx$$ is $${k \over 6}$$,...
JEE Main 2020 (Online) 3rd September Evening Slot
Suppose f(x) is a polynomial of degree four, having critical points at –1, 0, 1. If T = {x $$\in$$ R | f(x) = f(0)}, then the sum of squares of all...
JEE Main 2020 (Online) 3rd September Morning Slot
$$\int\limits_{ - \pi }^\pi {\left| {\pi - \left| x \right|} \right|dx}$$ is equal to :
JEE Main 2020 (Online) 9th January Evening Slot
Let a function ƒ : [0, 5] $$\to$$ R be continuous, ƒ(1) = 3 and F be defined as : $$F(x) = \int\limits_1^x {{t^2}g(t)dt}$$ , where $$g(t) = \int\li... JEE Main 2020 (Online) 9th January Morning Slot The value of$$\int\limits_0^{2\pi } {{{x{{\sin }^8}x} \over {{{\sin }^8}x + {{\cos }^8}x}}} dx$$is equal to : JEE Main 2020 (Online) 9th January Morning Slot If for all real triplets (a, b, c), ƒ(x) = a + bx + cx2; then$$\int\limits_0^1 {f(x)dx} $$is equal to : JEE Main 2020 (Online) 8th January Evening Slot If$$I = \int\limits_1^2 {{{dx} \over {\sqrt {2{x^3} - 9{x^2} + 12x + 4} }}} $$, then : JEE Main 2020 (Online) 8th January Evening Slot$$\mathop {\lim }\limits_{x \to 0} {{\int_0^x {t\sin \left( {10t} \right)dt} } \over x}$$is equal to JEE Main 2020 (Online) 7th January Evening Slot The value of$$\alpha $$for which$$4\alpha \int\limits_{ - 1}^2 {{e^{ - \alpha \left| x \right|}}dx} = 5$$, is: JEE Main 2020 (Online) 7th January Evening Slot If$$\theta $$1 and$$\theta $$2 be respectively the smallest and the largest values of$$\theta $$in (0, 2$$\pi $$) - {$$\pi $$} which satisfy the... JEE Main 2020 (Online) 7th January Morning Slot If ƒ(a + b + 1 - x) = ƒ(x), for all x, where a and b are fixed positive real numbers, then$${1 \over {a + b}}\int_a^b {x\left( {f(x) + f(x + 1)} \rig...
JEE Main 2019 (Online) 12th April Evening Slot
A value of $$\alpha$$ such that $$\int\limits_\alpha ^{\alpha + 1} {{{dx} \over {\left( {x + \alpha } \right)\left( {x + \alpha + 1} \right)}}} = ... JEE Main 2019 (Online) 12th April Morning Slot If$$\int\limits_0^{{\pi \over 2}} {{{\cot x} \over {\cot x + \cos ecx}}} dx$$= m($$\pi $$+ n), then m.n is equal to JEE Main 2019 (Online) 12th April Morning Slot Let f : R$$ \to $$R be a continuously differentiable function such that f(2) = 6 and f'(2) =$${1 \over {48}}$$. If$$\int\limits_6^{f\left( x \righ...
JEE Main 2019 (Online) 10th April Evening Slot
The integral $$\int\limits_{\pi /6}^{\pi /3} {{{\sec }^{2/3}}} x\cos e{c^{4/3}}xdx$$ is equal to :
JEE Main 2019 (Online) 10th April Morning Slot
The value of $$\int\limits_0^{2\pi } {\left[ {\sin 2x\left( {1 + \cos 3x} \right)} \right]} dx$$, where [t] denotes the greatest integer function is :...
JEE Main 2019 (Online) 10th April Morning Slot
$$\mathop {\lim }\limits_{n \to \infty } \left( {{{{{(n + 1)}^{1/3}}} \over {{n^{4/3}}}} + {{{{(n + 2)}^{1/3}}} \over {{n^{4/3}}}} + ....... + {{{{(2n... JEE Main 2019 (Online) 9th April Evening Slot The value of the integral$$\int\limits_0^1 {x{{\cot }^{ - 1}}(1 - {x^2} + {x^4})dx} $$is :- JEE Main 2019 (Online) 9th April Evening Slot If f : R$$ \to $$R is a differentiable function and f(2) = 6, then$$\mathop {\lim }\limits_{x \to 2} {{\int\limits_6^{f\left( x \right)} {2tdt} } \...
JEE Main 2019 (Online) 9th April Morning Slot
The value of $$\int\limits_0^{\pi /2} {{{{{\sin }^3}x} \over {\sin x + \cos x}}dx}$$ is
JEE Main 2019 (Online) 8th April Evening Slot
Let $$f(x) = \int\limits_0^x {g(t)dt}$$ where g is a non-zero even function. If ƒ(x + 5) = g(x), then $$\int\limits_0^x {f(t)dt}$$ equals-
JEE Main 2019 (Online) 8th April Morning Slot
If $$f(x) = {{2 - x\cos x} \over {2 + x\cos x}}$$ and g(x) = logex, (x > 0) then the value of integral $$\int\limits_{ - {\pi \over 4}}^{{\pi \ov... JEE Main 2019 (Online) 12th January Evening Slot The integral$$\int\limits_1^e {\left\{ {{{\left( {{x \over e}} \right)}^{2x}} - {{\left( {{e \over x}} \right)}^x}} \right\}} \,$$loge x dx is equal... JEE Main 2019 (Online) 12th January Evening Slot$$\mathop {\lim }\limits_{x \to \infty } \left( {{n \over {{n^2} + {1^2}}} + {n \over {{n^2} + {2^2}}} + {n \over {{n^2} + {3^2}}} + ..... + {1 \over ...
JEE Main 2019 (Online) 12th January Morning Slot
Let f and g be continuous functions on [0, a] such that f(x) = f(a – x) and g(x) + g(a – x) = 4, then $$\int\limits_0^a \,$$f(x) g(x) dx is equal to ...
JEE Main 2019 (Online) 11th January Evening Slot
The integral  $$\int\limits_{\pi /6}^{\pi /4} {{{dx} \over {\sin 2x\left( {{{\tan }^5}x + {{\cot }^5}x} \right)}}}$$  equals :
JEE Main 2019 (Online) 11th January Morning Slot
The value of the integral $$\int\limits_{ - 2}^2 {{{{{\sin }^2}x} \over { \left[ {{x \over \pi }} \right] + {1 \over 2}}}} \,dx$$ (where [x] denotes ...
JEE Main 2019 (Online) 10th January Evening Slot
The value of   $$\int\limits_{ - \pi /2}^{\pi /2} {{{dx} \over {\left[ x \right] + \left[ {\sin x} \right] + 4}}} ,$$  where [t] d...
JEE Main 2019 (Online) 10th January Evening Slot
If  $$\int\limits_0^x \,$$f(t) dt = x2 + $$\int\limits_x^1 \,$$ t2f(t) dt then f '$$\left( {{1 \over 2}} \right)$$ is -...
JEE Main 2019 (Online) 10th January Morning Slot
Let  $${\rm I} = \int\limits_a^b {\left( {{x^4} - 2{x^2}} \right)} dx.$$  If I is minimum then the ordered pair (a, b) is -
JEE Main 2019 (Online) 9th January Evening Slot
Let f be a differentiable function from R to R such that $$\left| {f\left( x \right) - f\left( y \right)} \right| \le 2{\left| {x - y} \right|^{{3 \o... JEE Main 2019 (Online) 9th January Evening Slot If$$\int\limits_0^{{\pi \over 3}} {{{\tan \theta } \over {\sqrt {2k\,\sec \theta } }}} \,d\theta = 1 - {1 \over {\sqrt 2 }},\left(...
JEE Main 2019 (Online) 9th January Morning Slot
The value of $$\int\limits_0^\pi {{{\left| {\cos x} \right|}^3}} \,dx$$ is :
JEE Main 2018 (Online) 16th April Morning Slot
If $$f(x) = \int\limits_0^x {t\left( {\sin x - \sin t} \right)dt\,\,\,}$$ then :
JEE Main 2018 (Offline)
The value of $$\int\limits_{ - \pi /2}^{\pi /2} {{{{{\sin }^2}x} \over {1 + {2^x}}}} dx$$ is
JEE Main 2018 (Online) 15th April Evening Slot
The value of integral $$\int_{{\pi \over 4}}^{{{3\pi } \over 4}} {{x \over {1 + \sin x}}dx}$$ is :
JEE Main 2018 (Online) 15th April Evening Slot
If   $${I_1} = \int_0^1 {{e^{ - x}}} {\cos ^2}x{\mkern 1mu} dx;$$    $${I_2} = \int_0^1 {{e^{ - {x^2}}}} {\cos ^2}x{\mkern 1mu} d... JEE Main 2018 (Online) 15th April Morning Slot The value of the integral$$\int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {{{\sin }^4}} x\left( {1 + \log \left( {{{2 + \sin x} \over {2 - \sin x}}...
JEE Main 2017 (Online) 9th April Morning Slot
If    $$\mathop {\lim }\limits_{n \to \infty } \,\,{{{1^a} + {2^a} + ...... + {n^a}} \over {{{(n + 1)}^{a - 1}}\left[ {\left( {na + 1} \righ... JEE Main 2017 (Online) 9th April Morning Slot If$$\int\limits_1^2 {{{dx} \over {{{\left( {{x^2} - 2x + 4} \right)}^{{3 \over 2}}}}}} = {k \over {k + 5}},$$then k is equal to : JEE Main 2017 (Online) 8th April Morning Slot The integral$$\int_{{\pi \over {12}}}^{{\pi \over 4}} {\,\,{{8\cos 2x} \over {{{\left( {\tan x + \cot x} \right)}^3}}}} \,dx$$equals : JEE Main 2017 (Offline) The integral$$\int\limits_{{\pi \over 4}}^{{{3\pi } \over 4}} {{{dx} \over {1 + \cos x}}} $$is equal to JEE Main 2016 (Online) 10th April Morning Slot The value of the integral$$\int\limits_4^{10} {{{\left[ {{x^2}} \right]dx} \over {\left[ {{x^2} - 28x + 196} \right] + \left[ {{x^2}} \right]}}} ,$$... JEE Main 2016 (Online) 10th April Morning Slot For x$$ \in $$R, x$$ \ne $$0, if y(x) is a differentiable function such that x$$\int\limits_1^x y $$(t) dt = (x + 1)$$\int\limits_1^x ty $$(t... JEE Main 2016 (Online) 9th April Morning Slot If$$2\int\limits_0^1 {{{\tan }^{ - 1}}xdx = \int\limits_0^1 {{{\cot }^{ - 1}}} } \left( {1 - x + {x^2}} \right)dx,$$then$$\int\limits_0...
JEE Main 2016 (Offline)
$$\mathop {\lim }\limits_{n \to \infty } {\left( {{{\left( {n + 1} \right)\left( {n + 2} \right)...3n} \over {{n^{2n}}}}} \right)^{{1 \over n}}}$$ is ...
JEE Main 2015 (Offline)
The integral $$\int\limits_2^4 {{{\log \,{x^2}} \over {\log {x^2} + \log \left( {36 - 12x + {x^2}} \right)}}dx}$$ is equal to :
JEE Main 2014 (Offline)
The integral $$\int\limits_0^\pi {\sqrt {1 + 4{{\sin }^2}{x \over 2} - 4\sin {x \over 2}{\mkern 1mu} } } dx$$ equals:
JEE Main 2013 (Offline)
Statement-1 : The value of the integral $$\int\limits_{\pi /6}^{\pi /3} {{{dx} \over {1 + \sqrt {\tan \,x} }}}$$ is equal to $$\pi /6$$ Statement-2 ...
AIEEE 2011
The value of $$\int\limits_0^1 {{{8\log \left( {1 + x} \right)} \over {1 + {x^2}}}} dx$$ is
AIEEE 2010
Let $$p(x)$$ be a function defined on $$R$$ such that $$p'(x)=p'(1-x),$$ for all $$x \in \left[ {0,1} \right],p\left( 0 \right) = 1$$ and $$p(1)=41.$$...
AIEEE 2009
$$\int\limits_0^\pi {\left[ {\cot x} \right]dx,}$$ where $$\left[ . \right]$$ denotes the greatest integer function, is equal to:
AIEEE 2007
Let $$F\left( x \right) = f\left( x \right) + f\left( {{1 \over x}} \right),$$ where $$f\left( x \right) = \int\limits_l^x {{{\log t} \over {1 + t}}dt... AIEEE 2007 The solution for$$x$$of the equation$$\int\limits_{\sqrt 2 }^x {{{dt} \over {t\sqrt {{t^2} - 1} }} = {\pi \over 2}} $$is AIEEE 2007 Let$$I = \int\limits_0^1 {{{\sin x} \over {\sqrt x }}dx} $$and$$J = \int\limits_0^1 {{{\cos x} \over {\sqrt x }}dx} .$$Then which one of the follo... AIEEE 2006$$\int\limits_0^\pi {xf\left( {\sin x} \right)dx} $$is equal to AIEEE 2006$$\int\limits_{ - {{3\pi } \over 2}}^{ - {\pi \over 2}} {\left[ {{{\left( {x + \pi } \right)}^3} + {{\cos }^2}\left( {x + 3\pi } \right)} \right]} dx...
AIEEE 2006
The value of $$\int\limits_1^a {\left[ x \right]} f'\left( x \right)dx,a > 1$$ where $${\left[ x \right]}$$ denotes the greatest integer not exceed...
AIEEE 2005
Let $$f:R \to R$$ be a differentiable function having $$f\left( 2 \right) = 6$$, $$f'\left( 2 \right) = \left( {{1 \over {48}}} \right)$$. Then $$... AIEEE 2005 If$${I_1} = \int\limits_0^1 {{2^{{x^2}}}dx,{I_2} = \int\limits_0^1 {{2^{{x^3}}}dx,\,{I_3} = \int\limits_1^2 {{2^{{x^2}}}dx} } } $$and$${I_4} = \int...
AIEEE 2005
The value of $$\int\limits_{ - \pi }^\pi {{{{{\cos }^2}} \over {1 + {a^x}}}dx,\,\,a > 0,}$$ is
AIEEE 2005
The value of integral, $$\int\limits_3^6 {{{\sqrt x } \over {\sqrt {9 - x} + \sqrt x }}} dx$$ is
AIEEE 2005
$$\mathop {\lim }\limits_{n \to \infty } \left[ {{1 \over {{n^2}}}{{\sec }^2}{1 \over {{n^2}}} + {2 \over {{n^2}}}{{\sec }^2}{4 \over {{n^2}}}.... + {... AIEEE 2004$$\mathop {Lim}\limits_{n \to \infty } \sum\limits_{r = 1}^n {{1 \over n}{e^{{r \over n}}}} $$is AIEEE 2004 The value of$$\int\limits_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} $$is AIEEE 2004 The value of$$I = \int\limits_0^{\pi /2} {{{{{\left( {\sin x + \cos x} \right)}^2}} \over {\sqrt {1 + \sin 2x} }}dx} $$is AIEEE 2004 If$$\int\limits_0^\pi {xf\left( {\sin x} \right)dx = A\int\limits_0^{\pi /2} {f\left( {\sin x} \right)dx,} } $$then$$A$$is AIEEE 2004 If$$f\left( x \right) = {{{e^x}} \over {1 + {e^x}}},{I_1} = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {xg\left\{ {x\left( {1 - x} \rig...
AIEEE 2003
If $$f\left( y \right) = {e^y},$$ $$g\left( y \right) = y;y > 0$$ and $$F\left( t \right) = \int\limits_0^t {f\left( {t - y} \right)g\left( y \rig... AIEEE 2003 Let$$f(x)$$be a function satisfying$$f'(x)=f(x)$$with$$f(0)=1$$and$$g(x)$$be a function that satisfies$$f\left( x \right) + g\left( x \right)...
AIEEE 2003
If $$f\left( {a + b - x} \right) = f\left( x \right)$$ then $$\int\limits_a^b {xf\left( x \right)dx}$$ is equal to
AIEEE 2003
The value of the integral $$I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx}$$ is
AIEEE 2003
$$\mathop {\lim }\limits_{n \to \infty } {{1 + {2^4} + {3^4} + .... + {n^4}} \over {{n^5}}}$$ - $$\mathop {\lim }\limits_{n \to \infty } {{1 + {2^3} +... AIEEE 2003 The value of$$\mathop {\lim }\limits_{x \to 0} {{\int\limits_0^{{x^2}} {{{\sec }^2}tdt} } \over xsinx}$$is AIEEE 2002$$\int\limits_0^{10\pi } {\left| {\sin x} \right|dx} $$is AIEEE 2002$${I_n} = \int\limits_0^{\pi /4} {{{\tan }^n}x\,dx} $$then$$\,\mathop {\lim }\limits_{n \to \infty } \,n\left[ {{I_n} + {I_{n + 2}}} \right]$$equal... AIEEE 2002$$\int\limits_0^2 {\left[ {{x^2}} \right]dx} $$is AIEEE 2002$$\int_{ - \pi }^\pi {{{2x\left( {1 + \sin x} \right)} \over {1 + {{\cos }^2}x}}} dx$$is AIEEE 2002 If$$y=f(x)$$makes +$$ve$$intercept of$$2$$and$$0$$unit on$$x$$and$$y$$axes and encloses an area of$$3/4$$square unit with the axes then ... AIEEE 2002$$\mathop {\lim }\limits_{n \to \infty } {{{1^p} + {2^p} + {3^p} + ..... + {n^p}} \over {{n^{p + 1}}}}$$is ## Numerical JEE Main 2024 (Online) 9th April Morning Shift Let$$\lim _\limits{n \rightarrow \infty}\left(\frac{n}{\sqrt{n^4+1}}-\frac{2 n}{\left(n^2+1\right) \sqrt{n^4+1}}+\frac{n}{\sqrt{n^4+16}}-\frac{8 n}{\...
JEE Main 2024 (Online) 6th April Evening Shift
Let $$[t]$$ denote the largest integer less than or equal to $$t$$. If $$\int_\limits0^3\left(\left[x^2\right]+\left[\frac{x^2}{2}\right]\right) \math... JEE Main 2024 (Online) 6th April Morning Shift Let$$r_k=\frac{\int_0^1\left(1-x^7\right)^k d x}{\int_0^1\left(1-x^7\right)^{k+1} d x}, k \in \mathbb{N}$$. Then the value of$$\sum_\limits{k=1}^{10...
JEE Main 2024 (Online) 5th April Evening Shift
If $$f(t)=\int_\limits0^\pi \frac{2 x \mathrm{~d} x}{1-\cos ^2 \mathrm{t} \sin ^2 x}, 0... JEE Main 2024 (Online) 4th April Morning Shift If the shortest distance between the lines$$\frac{x+2}{2}=\frac{y+3}{3}=\frac{z-5}{4}$$and$$\frac{x-3}{1}=\frac{y-2}{-3}=\frac{z+4}{2}$$is$$\frac...
JEE Main 2024 (Online) 4th April Morning Shift
If $$\int_0^{\frac{\pi}{4}} \frac{\sin ^2 x}{1+\sin x \cos x} \mathrm{~d} x=\frac{1}{\mathrm{a}} \log _{\mathrm{e}}\left(\frac{\mathrm{a}}{3}\right)+\... JEE Main 2024 (Online) 1st February Evening Shift Let f:(0, \infty) \rightarrow \mathbf{R} and \mathrm{F}(x)=\int\limits_0^x \mathrm{t} f(\mathrm{t}) \mathrm{dt}. If \mathrm{F}\left(x^2\right)=x^... JEE Main 2024 (Online) 1st February Morning Shift If \int\limits_{-\pi / 2}^{\pi / 2} \frac{8 \sqrt{2} \cos x \mathrm{~d} x}{\left(1+\mathrm{e}^{\sin x}\right)\left(1+\sin ^4 x\right)}=\alpha \pi+\be... JEE Main 2024 (Online) 31st January Evening Shift$$\left|\frac{120}{\pi^3} \int_\limits0^\pi \frac{x^2 \sin x \cos x}{\sin ^4 x+\cos ^4 x} d x\right| \text { is equal to }$$________. JEE Main 2024 (Online) 31st January Morning Shift If the integral$$525 \int_\limits0^{\frac{\pi}{2}} \sin 2 x \cos ^{\frac{11}{2}} x\left(1+\operatorname{Cos}^{\frac{5}{2}} x\right)^{\frac{1}{2}} d x...
JEE Main 2024 (Online) 31st January Morning Shift
Let $$S=(-1, \infty)$$ and $$f: S \rightarrow \mathbb{R}$$ be defined as $$f(x)=\int_\limits{-1}^x\left(e^t-1\right)^{11}(2 t-1)^5(t-2)^7(t-3)^{12}(2 ... JEE Main 2024 (Online) 31st January Morning Shift Let$$f: \mathbb{R} \rightarrow \mathbb{R}$$be a function defined by$$f(x)=\frac{4^x}{4^x+2}$$and$$M=\int_\limits{f(a)}^{f(1-a)} x \sin ^4(x(1-x))...
JEE Main 2024 (Online) 30th January Morning Shift
The value of $$9 \int_\limits0^9\left[\sqrt{\frac{10 x}{x+1}}\right] \mathrm{d} x$$, where $$[t]$$ denotes the greatest integer less than or equal to ...
JEE Main 2024 (Online) 29th January Evening Shift
Let the slope of the line $$45 x+5 y+3=0$$ be $$27 r_1+\frac{9 r_2}{2}$$ for some $$r_1, r_2 \in \mathbb{R}$$. Then $$\lim _\limits{x \rightarrow 3}\l... JEE Main 2024 (Online) 29th January Evening Shift If$$\int_\limits{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\sin 2 x} d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}$$, where$$\alpha, \beta$$and$$\gamma$$... JEE Main 2024 (Online) 27th January Evening Shift Let$$f(x)=\int_\limits0^x g(t) \log _{\mathrm{e}}\left(\frac{1-\mathrm{t}}{1+\mathrm{t}}\right) \mathrm{dt}$$, where$$g$$is a continuous odd functi... JEE Main 2023 (Online) 13th April Evening Shift Let$$f_{n}=\int_\limits{0}^{\frac{\pi}{2}}\left(\sum_\limits{k=1}^{n} \sin ^{k-1} x\right)\left(\sum_\limits{k=1}^{n}(2 k-1) \sin ^{k-1} x\right) \co...
JEE Main 2023 (Online) 13th April Morning Shift
Let for $$x \in \mathbb{R}, S_{0}(x)=x, S_{k}(x)=C_{k} x+k \int_{0}^{x} S_{k-1}(t) d t$$, where $$C_{0}=1, C_{k}=1-\int_{0}^{1} S_{k-1}(x) d x, k=1,2... JEE Main 2023 (Online) 12th April Morning Shift If$$\int_\limits{-0.15}^{0.15}\left|100 x^{2}-1\right| d x=\frac{k}{3000}$$, then$$k$$is equal to ___________. JEE Main 2023 (Online) 11th April Morning Shift For$$m, n > 0$$, let$$\alpha(m, n)=\int_\limits{0}^{2} t^{m}(1+3 t)^{n} d t$$. If$$11 \alpha(10,6)+18 \alpha(11,5)=p(14)^{6}$$, then$$p$$is equal... JEE Main 2023 (Online) 8th April Evening Shift Let$$[t]$$denote the greatest integer function. If$$\int_\limits{0}^{2.4}\left[x^{2}\right] d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}+\delta \sqrt{...
JEE Main 2023 (Online) 8th April Morning Shift
Let $$[t]$$ denote the greatest integer $$\leq t$$. Then $$\frac{2}{\pi} \int_\limits{\pi / 6}^{5 \pi / 6}(8[\operatorname{cosec} x]-5[\cot x]) d x$$ ...
JEE Main 2023 (Online) 6th April Evening Shift
EXAM MAP
Medical
NEET