Sets and Relations · Mathematics · JEE Main

Start Practice

MCQ (Single Correct Answer)

1

Let $\mathrm{S}=\mathbf{N} \cup\{0\}$. Define a relation R from S to $\mathbf{R}$ by :

$$ \mathrm{R}=\left\{(x, y): \log _{\mathrm{e}} y=x \log _{\mathrm{e}}\left(\frac{2}{5}\right), x \in \mathrm{~S}, y \in \mathbf{R}\right\} . $$

Then, the sum of all the elements in the range of $R$ is equal to :

JEE Main 2025 (Online) 29th January Evening Shift
2

Define a relation R on the interval $ \left[0, \frac{\pi}{2}\right) $ by $ x $ R $ y $ if and only if $ \sec^2x - \tan^2y = 1 $. Then R is :

JEE Main 2025 (Online) 29th January Morning Shift
3

The relation $R=\{(x, y): x, y \in \mathbb{Z}$ and $x+y$ is even $\}$ is:

JEE Main 2025 (Online) 28th January Morning Shift
4

Let $\mathrm{A}=\left\{x \in(0, \pi)-\left\{\frac{\pi}{2}\right\}: \log _{(2 / \pi)}|\sin x|+\log _{(2 / \pi)}|\cos x|=2\right\}$ and $\mathrm{B}=\{x \geqslant 0: \sqrt{x}(\sqrt{x}-4)-3|\sqrt{x}-2|+6=0\}$. Then $\mathrm{n}(\mathrm{A} \cup \mathrm{B})$ is equal to :

JEE Main 2025 (Online) 24th January Evening Shift
5

Let $\mathrm{X}=\mathbf{R} \times \mathbf{R}$. Define a relation R on X as :

$$\left(a_1, b_1\right) R\left(a_2, b_2\right) \Leftrightarrow b_1=b_2$$

Statement I: $\quad \mathrm{R}$ is an equivalence relation.

Statement II : For some $(\mathrm{a}, \mathrm{b}) \in \mathrm{X}$, the $\operatorname{set} \mathrm{S}=\{(x, y) \in \mathrm{X}:(x, y) \mathrm{R}(\mathrm{a}, \mathrm{b})\}$ represents a line parallel to $y=x$.

In the light of the above statements, choose the correct answer from the options given below :

JEE Main 2025 (Online) 23rd January Evening Shift
6

Let $\mathrm{A}=\{(x, y) \in \mathbf{R} \times \mathbf{R}:|x+y| \geqslant 3\}$ and $\mathrm{B}=\{(x, y) \in \mathbf{R} \times \mathbf{R}:|x|+|y| \leq 3\}$. If $\mathrm{C}=\{(x, y) \in \mathrm{A} \cap \mathrm{B}: x=0$ or $y=0\}$, then $\sum_{(x, y) \in \mathrm{C}}|x+y|$ is :

JEE Main 2025 (Online) 23rd January Evening Shift
7

Let $\mathrm{R}=\{(1,2),(2,3),(3,3)\}$ be a relation defined on the set $\{1,2,3,4\}$. Then the minimum number of elements, needed to be added in R so that R becomes an equivalence relation, is:

JEE Main 2025 (Online) 23rd January Morning Shift
8

Let $A=\{1,2,3, \ldots, 10\}$ and $B=\left\{\frac{m}{n}: m, n \in A, m< n\right.$ and $\left.\operatorname{gcd}(m, n)=1\right\}$. Then $n(B)$ is equal to :

JEE Main 2025 (Online) 22nd January Morning Shift
9

The number of non-empty equivalence relations on the set $\{1,2,3\}$ is :

JEE Main 2025 (Online) 22nd January Morning Shift
10

Let $$A=\{2,3,6,8,9,11\}$$ and $$B=\{1,4,5,10,15\}$$. Let $$R$$ be a relation on $$A \times B$$ defined by $$(a, b) R(c, d)$$ if and only if $$3 a d-7 b c$$ is an even integer. Then the relation $$R$$ is

JEE Main 2024 (Online) 8th April Evening Shift
11

Let $$\mathrm{A}=\{1,2,3,4,5\}$$. Let $$\mathrm{R}$$ be a relation on $$\mathrm{A}$$ defined by $$x \mathrm{R} y$$ if and only if $$4 x \leq 5 \mathrm{y}$$. Let $$\mathrm{m}$$ be the number of elements in $$\mathrm{R}$$ and $$\mathrm{n}$$ be the minimum number of elements from $$\mathrm{A} \times \mathrm{A}$$ that are required to be added to R to make it a symmetric relation. Then m + n is equal to :

JEE Main 2024 (Online) 6th April Evening Shift
12

Let $$A=\{n \in[100,700] \cap \mathrm{N}: n$$ is neither a multiple of 3 nor a multiple of 4$$\}$$. Then the number of elements in $$A$$ is

JEE Main 2024 (Online) 6th April Morning Shift
13

Let the relations $$R_1$$ and $$R_2$$ on the set $$X=\{1,2,3, \ldots, 20\}$$ be given by $$R_1=\{(x, y): 2 x-3 y=2\}$$ and $$R_2=\{(x, y):-5 x+4 y=0\}$$. If $$M$$ and $$N$$ be the minimum number of elements required to be added in $$R_1$$ and $$R_2$$, respectively, in order to make the relations symmetric, then $$M+N$$ equals

JEE Main 2024 (Online) 6th April Morning Shift
14

Let a relation $$\mathrm{R}$$ on $$\mathrm{N} \times \mathbb{N}$$ be defined as: $$\left(x_1, y_1\right) \mathrm{R}\left(x_2, y_2\right)$$ if and only if $$x_1 \leq x_2$$ or $$y_1 \leq y_2$$. Consider the two statements:

(I) $$\mathrm{R}$$ is reflexive but not symmetric.

(II) $$\mathrm{R}$$ is transitive

Then which one of the following is true?

JEE Main 2024 (Online) 4th April Evening Shift
15
Consider the relations $R_1$ and $R_2$ defined as $a R_1 b \Leftrightarrow a^2+b^2=1$ for all $a, b \in \mathbf{R}$ and $(a, b) R_2(c, d) \Leftrightarrow$ $a+d=b+c$ for all $(a, b),(c, d) \in \mathbf{N} \times \mathbf{N}$. Then :
JEE Main 2024 (Online) 1st February Evening Shift
16

If R is the smallest equivalence relation on the set $$\{1,2,3,4\}$$ such that $$\{(1,2),(1,3)\} \subset \mathrm{R}$$, then the number of elements in $$\mathrm{R}$$ is __________.

JEE Main 2024 (Online) 29th January Evening Shift
17

Let $$R$$ be a relation on $$Z \times Z$$ defined by $$(a, b) R(c, d)$$ if and only if $$a d-b c$$ is divisible by 5. Then $$R$$ is

JEE Main 2024 (Online) 29th January Morning Shift
18

Let $$A$$ and $$B$$ be two finite sets with $$m$$ and $$n$$ elements respectively. The total number of subsets of the set $$A$$ is 56 more than the total number of subsets of $$B$$. Then the distance of the point $$P(m, n)$$ from the point $$Q(-2,-3)$$ is :

JEE Main 2024 (Online) 27th January Evening Shift
19
Let $S=\{1,2,3, \ldots, 10\}$. Suppose $M$ is the set of all the subsets of $S$, then the relation

$\mathrm{R}=\{(\mathrm{A}, \mathrm{B}): \mathrm{A} \cap \mathrm{B} \neq \phi ; \mathrm{A}, \mathrm{B} \in \mathrm{M}\}$ is :
JEE Main 2024 (Online) 27th January Morning Shift
20

Let $$\mathrm{A}=\{1,3,4,6,9\}$$ and $$\mathrm{B}=\{2,4,5,8,10\}$$. Let $$\mathrm{R}$$ be a relation defined on $$\mathrm{A} \times \mathrm{B}$$ such that $$\mathrm{R}=\left\{\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right): a_{1} \leq b_{2}\right.$$ and $$\left.b_{1} \leq a_{2}\right\}$$. Then the number of elements in the set R is :

JEE Main 2023 (Online) 11th April Evening Shift
21

An organization awarded 48 medals in event 'A', 25 in event 'B' and 18 in event 'C'. If these medals went to total 60 men and only five men got medals in all the three events, then, how many received medals in exactly two of three events?

JEE Main 2023 (Online) 11th April Morning Shift
22

Let $$\mathrm{A}=\{2,3,4\}$$ and $$\mathrm{B}=\{8,9,12\}$$. Then the number of elements in the relation $$\mathrm{R}=\left\{\left(\left(a_{1}, \mathrm{~b}_{1}\right),\left(a_{2}, \mathrm{~b}_{2}\right)\right) \in(A \times B, A \times B): a_{1}\right.$$ divides $$\mathrm{b}_{2}$$ and $$\mathrm{a}_{2}$$ divides $$\left.\mathrm{b}_{1}\right\}$$ is :

JEE Main 2023 (Online) 10th April Evening Shift
23

Let $$\mathrm{A}=\{1,2,3,4,5,6,7\}$$. Then the relation $$\mathrm{R}=\{(x, y) \in \mathrm{A} \times \mathrm{A}: x+y=7\}$$ is :

JEE Main 2023 (Online) 8th April Evening Shift
24

Let $$P(S)$$ denote the power set of $$S=\{1,2,3, \ldots ., 10\}$$. Define the relations $$R_{1}$$ and $$R_{2}$$ on $$P(S)$$ as $$\mathrm{AR}_{1} \mathrm{~B}$$ if $$\left(\mathrm{A} \cap \mathrm{B}^{\mathrm{c}}\right) \cup\left(\mathrm{B} \cap \mathrm{A}^{\mathrm{c}}\right)=\emptyset$$ and $$\mathrm{AR}_{2} \mathrm{~B}$$ if $$\mathrm{A} \cup \mathrm{B}^{\mathrm{c}}=\mathrm{B} \cup \mathrm{A}^{\mathrm{c}}, \forall \mathrm{A}, \mathrm{B} \in \mathrm{P}(\mathrm{S})$$. Then :

JEE Main 2023 (Online) 1st February Evening Shift
25

Let $$R$$ be a relation on $$\mathbb{R}$$, given by $$R=\{(a, b): 3 a-3 b+\sqrt{7}$$ is an irrational number $$\}$$. Then $$R$$ is

JEE Main 2023 (Online) 1st February Morning Shift
26
Among the relations

$\mathrm{S}=\left\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathbb{R}-\{0\}, 2+\frac{\mathrm{a}}{\mathrm{b}}>0\right\}$

and $\mathrm{T}=\left\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathbb{R}, \mathrm{a}^{2}-\mathrm{b}^{2} \in \mathbb{Z}\right\}$,
JEE Main 2023 (Online) 31st January Evening Shift
27

Let $$\mathrm{R}$$ be a relation on $$\mathrm{N} \times \mathbb{N}$$ defined by $$(a, b) ~\mathrm{R}~(c, d)$$ if and only if $$a d(b-c)=b c(a-d)$$. Then $$\mathrm{R}$$ is

JEE Main 2023 (Online) 31st January Morning Shift
28

The minimum number of elements that must be added to the relation $$ \mathrm{R}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{c})\}$$ on the set $$\{a, b, c\}$$ so that it becomes symmetric and transitive is :

JEE Main 2023 (Online) 30th January Morning Shift
29

Let R be a relation defined on $$\mathbb{N}$$ as $$a\mathrm{R}b$$ if $$2a+3b$$ is a multiple of $$5,a,b\in \mathbb{N}$$. Then R is

JEE Main 2023 (Online) 29th January Evening Shift
30

The relation $$\mathrm{R = \{ (a,b):\gcd (a,b) = 1,2a \ne b,a,b \in \mathbb{Z}\}}$$ is :

JEE Main 2023 (Online) 24th January Morning Shift
31

Let R be a relation from the set $$\{1,2,3, \ldots, 60\}$$ to itself such that $$R=\{(a, b): b=p q$$, where $$p, q \geqslant 3$$ are prime numbers}. Then, the number of elements in R is :

JEE Main 2022 (Online) 29th July Morning Shift
32

For $$\alpha \in \mathbf{N}$$, consider a relation $$\mathrm{R}$$ on $$\mathbf{N}$$ given by $$\mathrm{R}=\{(x, y): 3 x+\alpha y$$ is a multiple of 7$$\}$$. The relation $$R$$ is an equivalence relation if and only if :

JEE Main 2022 (Online) 28th July Morning Shift
33

Let $$R_{1}$$ and $$R_{2}$$ be two relations defined on $$\mathbb{R}$$ by

$$a \,R_{1} \,b \Leftrightarrow a b \geq 0$$ and $$a \,R_{2} \,b \Leftrightarrow a \geq b$$

Then,

JEE Main 2022 (Online) 27th July Morning Shift
34

Let a set A = A1 $$\cup$$ A2 $$\cup$$ ..... $$\cup$$ Ak, where Ai $$\cap$$ Aj = $$\phi$$ for i $$\ne$$ j, 1 $$\le$$ j, j $$\le$$ k. Define the relation R from A to A by R = {(x, y) : y $$\in$$ Ai if and only if x $$\in$$ Ai, 1 $$\le$$ i $$\le$$ k}. Then, R is :

JEE Main 2022 (Online) 29th June Morning Shift
35

Let R1 = {(a, b) $$\in$$ N $$\times$$ N : |a $$-$$ b| $$\le$$ 13} and

R2 = {(a, b) $$\in$$ N $$\times$$ N : |a $$-$$ b| $$\ne$$ 13}. Then on N :

JEE Main 2022 (Online) 28th June Evening Shift
36
Which of the following is not correct for relation R on the set of real numbers ?
JEE Main 2021 (Online) 31st August Morning Shift
37
Out of all the patients in a hospital 89% are found to be suffering from heart ailment and 98% are suffering from lungs infection. If K% of them are suffering from both ailments, then K can not belong to the set :
JEE Main 2021 (Online) 26th August Morning Shift
38
Let N be the set of natural numbers and a relation R on N be defined by $$R = \{ (x,y) \in N \times N:{x^3} - 3{x^2}y - x{y^2} + 3{y^3} = 0\} $$. Then the relation R is :
JEE Main 2021 (Online) 27th July Evening Shift
39
Define a relation R over a class of n $$\times$$ n real matrices A and B as

"ARB iff there exists a non-singular matrix P such that PAP$$-$$1 = B".

Then which of the following is true?
JEE Main 2021 (Online) 18th March Evening Shift
40
In a school, there are three types of games to be played. Some of the students play two types of games, but none play all the three games. Which Venn diagrams can justify the above statement?

JEE Main 2021 (Online) 17th March Morning Shift Mathematics - Sets and Relations Question 73 English
JEE Main 2021 (Online) 17th March Morning Shift
41
Let A = {2, 3, 4, 5, ....., 30} and '$$ \simeq $$' be an equivalence relation on A $$\times$$ A, defined by (a, b) $$ \simeq $$ (c, d), if and only if ad = bc. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair (4, 3) is equal to :
JEE Main 2021 (Online) 16th March Evening Shift
42
The number of elements in the set {x $$\in$$ R : (|x| $$-$$ 3) |x + 4| = 6} is equal to :
JEE Main 2021 (Online) 16th March Morning Shift
43
Let R = {(P, Q) | P and Q are at the same distance from the origin} be a relation, then the equivalence class of (1, $$-$$1) is the set :
JEE Main 2021 (Online) 26th February Morning Shift
44
A survey shows that 73% of the persons working in an office like coffee, whereas 65% like tea. If x denotes the percentage of them, who like both coffee and tea, then x cannot be :
JEE Main 2020 (Online) 5th September Morning Slot
45
Let $$\mathop \cup \limits_{i = 1}^{50} {X_i} = \mathop \cup \limits_{i = 1}^n {Y_i} = T$$ where each Xi contains 10 elements and each Yi contains 5 elements. If each element of the set T is an element of exactly 20 of sets Xi’s and exactly 6 of sets Yi’s, then n is equal to :
JEE Main 2020 (Online) 4th September Evening Slot
46
A survey shows that 63% of the people in a city read newspaper A whereas 76% read newspaper B. If x% of the people read both the newspapers, then a possible value of x can be:
JEE Main 2020 (Online) 4th September Morning Slot
47
Let R1 and R2 be two relation defined as follows :
R1 = {(a, b) $$ \in $$ R2 : a2 + b2 $$ \in $$ Q} and
R2 = {(a, b) $$ \in $$ R2 : a2 + b2 $$ \notin $$ Q},
where Q is the set of all rational numbers. Then :
JEE Main 2020 (Online) 3rd September Evening Slot
48
Consider the two sets :
A = {m $$ \in $$ R : both the roots of
x2 – (m + 1)x + m + 4 = 0 are real}
and B = [–3, 5).
Which of the following is not true?
JEE Main 2020 (Online) 3rd September Morning Slot
49
If R = {(x, y) : x, y $$ \in $$ Z, x2 + 3y2 $$ \le $$ 8} is a relation on the set of integers Z, then the domain of R–1 is :
JEE Main 2020 (Online) 2nd September Morning Slot
50
If A = {x $$ \in $$ R : |x| < 2} and B = {x $$ \in $$ R : |x – 2| $$ \ge $$ 3}; then :
JEE Main 2020 (Online) 9th January Evening Slot
51
Let A, B and C be sets such that $$\phi $$ $$ \ne $$ A $$ \cap $$ B $$ \subseteq $$ C. Then which of the following statements is not true ?
JEE Main 2019 (Online) 12th April Evening Slot
52
Two newspapers A and B are published in a city. It is known that 25% of the city populations reads A and 20% reads B while 8% reads both A and B. Further, 30% of those who read A but not B look into advertisements and 40% of those who read B but not A also look into advertisements, while 50% of those who read both A and B look into advertisements. Then the percentage of the population who look into advertisement is :-
JEE Main 2019 (Online) 9th April Evening Slot
53
Let Z be the set of integers.
If A = {x $$ \in $$ Z : 2(x + 2) (x2 $$-$$ 5x + 6) = 1} and
B = {x $$ \in $$ Z : $$-$$ 3 < 2x $$-$$ 1 < 9},
then the number of subsets of the set A $$ \times $$ B, is
JEE Main 2019 (Online) 12th January Evening Slot
54
Let S = {1, 2, 3, … , 100}. The number of non-empty subsets A of S such that the product of elements in A is even is :
JEE Main 2019 (Online) 12th January Morning Slot
55
In a class of 140 students numbered 1 to 140, all even numbered students opted Mathematics course, those whose number is divisible by 3 opted Physics course and those whose number is divisible by 5 opted Chemistry course. Then the number of students who did not opt for any of the three courses is
JEE Main 2019 (Online) 10th January Morning Slot
56
Let N denote the set of all natural numbers. Define two binary relations on N as R = {(x, y) $$ \in $$ N $$ \times $$ N : 2x + y = 10} and R2 = {(x, y) $$ \in $$ N $$ \times $$ N : x + 2y = 10}. Then :
JEE Main 2018 (Online) 16th April Morning Slot
57
Two sets A and B are as under :

A = {($$a$$, b) $$ \in $$ R $$ \times $$ R : |$$a$$ - 5| < 1 and |b - 5| < 1};

B = {($$a$$, b) $$ \in $$ R $$ \times $$ R : 4($$a$$ - 6)2 + 9(b - 5)2 $$ \le $$ 36 };

Then
JEE Main 2018 (Offline)
58
Consider the following two binary relations on the set A = {a, b, c} :
R1 = {(c, a), (b, b), (a, c), (c, c), (b, c), (a, a)} and
R2 = {(a, b), (b, a), (c, c), (c, a), (a, a), (b, b), (a, c)}.
Then :
JEE Main 2018 (Online) 15th April Morning Slot
59
Let P = {$$\theta $$ : sin$$\theta $$ $$-$$ cos$$\theta $$ = $$\sqrt 2 \,\cos \theta $$}

and Q = {$$\theta $$ : sin$$\theta $$ + cos$$\theta $$ = $$\sqrt 2 \,\sin \theta $$} be two sets. Then
JEE Main 2016 (Online) 10th April Morning Slot
60
Let A and B be two sets containing four and two elements respectively. Then, the number of subsets of the set A $\times$ B , each having atleast three elements are
JEE Main 2015 (Offline)
61
Let X = {1, 2, 3, 4, 5}. The number of different ordered pairs (Y, Z) that can be formed such that Y $$ \subseteq $$ X, Z $$ \subseteq $$ X and Y $$ \cap $$ Z is empty, is :
AIEEE 2012
62
Let $R$ be the set of real numbers.

Statement I : $A=\{(x, y) \in R \times R: y-x$ is an integer $\}$ is an equivalence relation on $R$.

Statement II : $ B=\{(x, y) \in R \times R: x=\alpha y$ for some rational number $\alpha\}$ is an equivalence relation on $R$.
AIEEE 2011
63
Consider the following relations

$R=\{(x, y) \mid x, y$ are real numbers and $x=w y$ for some rational number $w\}$;

$S=\left\{\left(\frac{m}{n}, \frac{p}{q}\right) \mid m, n, p\right.$ and $q$ are integers such that $n, q \neq 0$ and $q m=p m\}$. Then
AIEEE 2010
64
If $A, B$ and $C$ are three sets such that $A \cap B=A \cap C$ and $A \cup B=A \cup C$, then :
AIEEE 2009
65
Let R be the real line. Consider the following subsets of the plane $$R \times R$$ :
$$S = \left\{ {(x,y):y = x + 1\,\,and\,\,0 < x < 2} \right\}$$
$$T = \left\{ {(x,y): x - y\,\,\,is\,\,an\,\,{\mathop{\rm int}} eger\,} \right\}$$,

Which one of the following is true ?

AIEEE 2008
66
Let $W$ denote the words in the English dictionary. Define the relation $R$ by

$R=\{(x, y) \in W \times W \mid$ the words $x$ and $y$ have at least one letter in common}. Then, $R$ is
AIEEE 2006
67
Let $R=\{(3,3),(6,6),(9,9),(12,12),(6,12)$, $(3,9),(3,12),(3,6)\}$ be a relation on the set $A=\{3,6,9,12\}$. The relation is :
AIEEE 2005
68
Let $R=\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a relation on the set $A=\{1,2,3,4\}$. The relation $R$ is :
AIEEE 2004

Numerical

1

Let $S=\left\{p_1, p_2 \ldots, p_{10}\right\}$ be the set of first ten prime numbers. Let $A=S \cup P$, where $P$ is the set of all possible products of distinct elements of $S$. Then the number of all ordered pairs $(x, y), x \in S$, $y \in A$, such that $x$ divides $y$, is ________ .

JEE Main 2025 (Online) 24th January Morning Shift
2

Let $A=\{1,2,3\}$. The number of relations on $A$, containing $(1,2)$ and $(2,3)$, which are reflexive and transitive but not symmetric, is _________.

JEE Main 2025 (Online) 22nd January Evening Shift
3

Let $$A=\{2,3,6,7\}$$ and $$B=\{4,5,6,8\}$$. Let $$R$$ be a relation defined on $$A \times B$$ by $$(a_1, b_1) R(a_2, b_2)$$ if and only if $$a_1+a_2=b_1+b_2$$. Then the number of elements in $$R$$ is __________.

JEE Main 2024 (Online) 9th April Morning Shift
4

In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $$m$$ and $$n$$ respectively be the least and the most number of students who studied all the three subjects. Then $$\mathrm{m}+\mathrm{n}$$ is equal to ___________.

JEE Main 2024 (Online) 4th April Morning Shift
5
Let $A=\{1,2,3, \ldots, 20\}$. Let $R_1$ and $R_2$ two relation on $A$ such that

$R_1=\{(a, b): b$ is divisible by $a\}$

$R_2=\{(a, b): a$ is an integral multiple of $b\}$.

Then, number of elements in $R_1-R_2$ is equal to _____________.
JEE Main 2024 (Online) 1st February Morning Shift
6

Let $$A=\{1,2,3, \ldots \ldots \ldots \ldots, 100\}$$. Let $$R$$ be a relation on $$\mathrm{A}$$ defined by $$(x, y) \in R$$ if and only if $$2 x=3 y$$. Let $$R_1$$ be a symmetric relation on $$A$$ such that $$R \subset R_1$$ and the number of elements in $$R_1$$ is $$\mathrm{n}$$. Then, the minimum value of $$\mathrm{n}$$ is _________.

JEE Main 2024 (Online) 31st January Evening Shift
7

Let $$A=\{1,2,3,4\}$$ and $$R=\{(1,2),(2,3),(1,4)\}$$ be a relation on $$\mathrm{A}$$. Let $$\mathrm{S}$$ be the equivalence relation on $$\mathrm{A}$$ such that $$R \subset S$$ and the number of elements in $$\mathrm{S}$$ is $$\mathrm{n}$$. Then, the minimum value of $$n$$ is __________.

JEE Main 2024 (Online) 31st January Morning Shift
8

The number of symmetric relations defined on the set $$\{1,2,3,4\}$$ which are not reflexive is _________.

JEE Main 2024 (Online) 30th January Evening Shift
9
The number of elements in the set

$\left\{n \in \mathbb{N}: 10 \leq n \leq 100\right.$ and $3^{n}-3$ is a multiple of 7$\}$ is ___________.
JEE Main 2023 (Online) 15th April Morning Shift
10
Let $A=\{1,2,3,4\}$ and $\mathrm{R}$ be a relation on the set $A \times A$ defined by

$R=\{((a, b),(c, d)): 2 a+3 b=4 c+5 d\}$. Then the number of elements in $\mathrm{R}$ is ____________.
JEE Main 2023 (Online) 15th April Morning Shift
11

Let $$\mathrm{A}=\{-4,-3,-2,0,1,3,4\}$$ and $$\mathrm{R}=\left\{(a, b) \in \mathrm{A} \times \mathrm{A}: b=|a|\right.$$ or $$\left.b^{2}=a+1\right\}$$ be a relation on $$\mathrm{A}$$. Then the minimum number of elements, that must be added to the relation $$\mathrm{R}$$ so that it becomes reflexive and symmetric, is __________

JEE Main 2023 (Online) 13th April Evening Shift
12

The number of relations, on the set $$\{1,2,3\}$$ containing $$(1,2)$$ and $$(2,3)$$, which are reflexive and transitive but not symmetric, is __________.

JEE Main 2023 (Online) 12th April Morning Shift
13

The number of elements in the set $$\{ n \in Z:|{n^2} - 10n + 19| < 6\} $$ is _________.

JEE Main 2023 (Online) 10th April Morning Shift
14

Let $$A=\{0,3,4,6,7,8,9,10\}$$ and $$R$$ be the relation defined on $$A$$ such that $$R=\{(x, y) \in A \times A: x-y$$ is odd positive integer or $$x-y=2\}$$. The minimum number of elements that must be added to the relation $$R$$, so that it is a symmetric relation, is equal to ____________.

JEE Main 2023 (Online) 8th April Morning Shift
15

Let $$\mathrm{A}=\{1,2,3,4, \ldots ., 10\}$$ and $$\mathrm{B}=\{0,1,2,3,4\}$$. The number of elements in the relation $$R=\left\{(a, b) \in A \times A: 2(a-b)^{2}+3(a-b) \in B\right\}$$ is ___________.

JEE Main 2023 (Online) 6th April Morning Shift
16

Let S = {1, 2, 3, 5, 7, 10, 11}. The number of non-empty subsets of S that have the sum of all elements a multiple of 3, is _____________.

JEE Main 2023 (Online) 25th January Morning Shift
17

The minimum number of elements that must be added to the relation R = {(a, b), (b, c), (b, d)} on the set {a, b, c, d} so that it is an equivalence relation, is __________.

JEE Main 2023 (Online) 24th January Evening Shift
18

Let $$S=\{4,6,9\}$$ and $$T=\{9,10,11, \ldots, 1000\}$$. If $$A=\left\{a_{1}+a_{2}+\ldots+a_{k}: k \in \mathbf{N}, a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right.$$ $$\epsilon S\}$$, then the sum of all the elements in the set $$T-A$$ is equal to __________.

JEE Main 2022 (Online) 29th July Morning Shift
19

Let $$A=\{1,2,3,4,5,6,7\}$$ and $$B=\{3,6,7,9\}$$. Then the number of elements in the set $$\{C \subseteq A: C \cap B \neq \phi\}$$ is ___________.

JEE Main 2022 (Online) 26th July Evening Shift
20

Let $$A=\{1,2,3,4,5,6,7\}$$. Define $$B=\{T \subseteq A$$ : either $$1 \notin T$$ or $$2 \in T\}$$ and $$C=\{T \subseteq A: T$$ the sum of all the elements of $$T$$ is a prime number $$\}$$. Then the number of elements in the set $$B \cup C$$ is ________________.

JEE Main 2022 (Online) 25th July Evening Shift
21

Let R1 and R2 be relations on the set {1, 2, ......., 50} such that

R1 = {(p, pn) : p is a prime and n $$\ge$$ 0 is an integer} and

R2 = {(p, pn) : p is a prime and n = 0 or 1}.

Then, the number of elements in R1 $$-$$ R2 is _______________.

JEE Main 2022 (Online) 28th June Morning Shift
22

Let A = {n $$\in$$ N : H.C.F. (n, 45) = 1} and

Let B = {2k : k $$\in$$ {1, 2, ......., 100}}. Then the sum of all the elements of A $$\cap$$ B is ____________.

JEE Main 2022 (Online) 26th June Morning Shift
23

Let $$A = \sum\limits_{i = 1}^{10} {\sum\limits_{j = 1}^{10} {\min \,\{ i,j\} } } $$ and $$B = \sum\limits_{i = 1}^{10} {\sum\limits_{j = 1}^{10} {\max \,\{ i,j\} } } $$. Then A + B is equal to _____________.

JEE Main 2022 (Online) 26th June Morning Shift
24

The sum of all the elements of the set $$\{ \alpha \in \{ 1,2,.....,100\} :HCF(\alpha ,24) = 1\} $$ is __________.

JEE Main 2022 (Online) 24th June Evening Shift
25
If A = {x $$\in$$ R : |x $$-$$ 2| > 1},
B = {x $$\in$$ R : $$\sqrt {{x^2} - 3} $$ > 1},
C = {x $$\in$$ R : |x $$-$$ 4| $$\ge$$ 2} and Z is the set of all integers, then the number of subsets of the
set (A $$\cap$$ B $$\cap$$ C)c $$\cap$$ Z is ________________.
JEE Main 2021 (Online) 27th August Morning Shift
26
Let A = {n $$\in$$ N | n2 $$\le$$ n + 10,000}, B = {3k + 1 | k$$\in$$ N} an dC = {2k | k$$\in$$N}, then the sum of all the elements of the set A $$\cap$$(B $$-$$ C) is equal to _____________.
JEE Main 2021 (Online) 27th July Evening Shift
27
Let  A = {n $$ \in $$ N: n is a 3-digit number}

       B = {9k + 2: k $$ \in $$ N}

and C = {9k + $$l$$: k $$ \in $$ N} for some $$l ( 0 < l < 9)$$

If the sum of all the elements of the set A $$ \cap $$ (B $$ \cup $$ C) is 274 $$ \times $$ 400, then $$l$$ is equal to ________.
JEE Main 2021 (Online) 24th February Morning Shift
28
Set A has m elements and set B has n elements. If the total number of subsets of A is 112 more than the total number of subsets of B, then the value of m.n is ______.
JEE Main 2020 (Online) 6th September Morning Slot
29
Let X = {n $$ \in $$ N : 1 $$ \le $$ n $$ \le $$ 50}. If
A = {n $$ \in $$ X: n is a multiple of 2} and
B = {n $$ \in $$ X: n is a multiple of 7}, then the number of elements in the smallest subset of X containing both A and B is ________.
JEE Main 2020 (Online) 7th January Evening Slot
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12