1
JEE Main 2024 (Online) 9th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the range of the function $$f(x)=\frac{1}{2+\sin 3 x+\cos 3 x}, x \in \mathbb{R}$$ be $$[a, b]$$. If $$\alpha$$ and $$\beta$$ ar respectively the A.M. and the G.M. of $$a$$ and $$b$$, then $$\frac{\alpha}{\beta}$$ is equal to

A
$$\pi$$
B
$$\sqrt{\pi}$$
C
$$\sqrt{2}$$
D
2
2
JEE Main 2024 (Online) 9th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the domain of the function $$f(x)=\sin ^{-1}\left(\frac{x-1}{2 x+3}\right)$$ is $$\mathbf{R}-(\alpha, \beta)$$, then $$12 \alpha \beta$$ is equal to :

A
40
B
36
C
24
D
32
3
JEE Main 2024 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x)=\left\{\begin{array}{ccc}-\mathrm{a} & \text { if } & -\mathrm{a} \leq x \leq 0 \\ x+\mathrm{a} & \text { if } & 0< x \leq \mathrm{a}\end{array}\right.$$ where $$\mathrm{a}> 0$$ and $$\mathrm{g}(x)=(f(|x|)-|f(x)|) / 2$$. Then the function $$g:[-a, a] \rightarrow[-a, a]$$ is

A
neither one-one nor onto.
B
both one-one and onto.
C
one-one.
D
onto
4
JEE Main 2024 (Online) 6th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the function $$f(x)=\left(\frac{1}{x}\right)^{2 x} ; x>0$$ attains the maximum value at $$x=\frac{1}{\mathrm{e}}$$ then :

A
$$\mathrm{e}^\pi<\pi^{\mathrm{e}}$$
B
$$\mathrm{e}^{2 \pi}<(2 \pi)^{\mathrm{e}}$$
C
$$(2 e)^\pi>\pi^{(2 e)}$$
D
$$\mathrm{e}^\pi>\pi^{\mathrm{e}}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12