1
JEE Main 2025 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the domain of the function $ \log_5(18x - x^2 - 77) $ is $ (\alpha, \beta) $ and the domain of the function $ \log_{(x-1)} \left( \frac{2x^2 + 3x - 2}{x^2 - 3x - 4} \right) $ is $(\gamma, \delta)$, then $ \alpha^2 + \beta^2 + \gamma^2 $ is equal to:

A

186

B

179

C

195

D

174

2
JEE Main 2025 (Online) 28th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $f:[0,3] \rightarrow$ A be defined by $f(x)=2 x^3-15 x^2+36 x+7$ and $g:[0, \infty) \rightarrow B$ be defined by $g(x)=\frac{x^{2025}}{x^{2025}+1}$, If both the functions are onto and $S=\{ x \in Z ; x \in A$ or $x \in B \}$, then $n(S)$ is equal to :
A

29

B

31

C

30

D

36

3
JEE Main 2025 (Online) 28th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $f(x)=\frac{2^x}{2^x+\sqrt{2}}, \mathrm{x} \in \mathbb{R}$, then $\sum_\limits{\mathrm{k}=1}^{81} f\left(\frac{\mathrm{k}}{82}\right)$ is equal to

A
$82$
B
$81 \sqrt{2}$
C
$41$
D
$\frac{81}{2}$
4
JEE Main 2025 (Online) 28th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=(2+3 a) x^2+\left(\frac{a+2}{a-1}\right) x+b, a \neq 1$. If $f(x+y)=f(x)+f(\mathrm{y})+1-\frac{2}{7} x \mathrm{y}$, then the value of $28 \sum\limits_{i=1}^5|f(i)|$ is

A
735
B
675
C
715
D
545
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12