1
JEE Main 2022 (Online) 25th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

$$\mathop {\lim }\limits_{n \to \infty } {1 \over {{2^n}}}\left( {{1 \over {\sqrt {1 - {1 \over {{2^n}}}} }} + {1 \over {\sqrt {1 - {2 \over {{2^n}}}} }} + {1 \over {\sqrt {1 - {3 \over {{2^n}}}} }} + \,\,...\,\, + \,\,{1 \over {\sqrt {1 - {{{2^n} - 1} \over {{2^n}}}} }}} \right)$$ is equal to

A
$$\frac{1}{2}$$
B
1
C
2
D
$$-$$2
2
JEE Main 2022 (Online) 25th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$[t]$$ denote the greatest integer less than or equal to $$t$$. Then the value of the integral $$\int_{-3}^{101}\left([\sin (\pi x)]+e^{[\cos (2 \pi x)]}\right) d x$$ is equal to

A
$$\frac{52(1-e)}{e}$$
B
$$\frac{52}{e}$$
C
$$\frac{52(2+e)}{e}$$
D
$$\frac{104}{e}$$
3
JEE Main 2022 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For any real number $$x$$, let $$[x]$$ denote the largest integer less than equal to $$x$$. Let $$f$$ be a real valued function defined on the interval $$[-10,10]$$ by $$f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even } .\end{array}\right.$$ Then the value of $$\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x \,d x$$ is :

A
4
B
2
C
1
D
0
4
JEE Main 2022 (Online) 30th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

$$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{r \over {2{r^2} - 7rn + 6{n^2}}}} $$ is equal to :

A
$${\log _e}\left( {{{\sqrt 3 } \over 2}} \right)$$
B
$${\log _e}\left( {{{3\sqrt 3 } \over 4}} \right)$$
C
$${\log _e}\left( {{{27} \over 4}} \right)$$
D
$${\log _e}\left( {{4 \over 3}} \right)$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12