1
JEE Main 2022 (Online) 25th July Evening Shift
+4
-1 $$\mathop {\lim }\limits_{n \to \infty } {1 \over {{2^n}}}\left( {{1 \over {\sqrt {1 - {1 \over {{2^n}}}} }} + {1 \over {\sqrt {1 - {2 \over {{2^n}}}} }} + {1 \over {\sqrt {1 - {3 \over {{2^n}}}} }} + \,\,...\,\, + \,\,{1 \over {\sqrt {1 - {{{2^n} - 1} \over {{2^n}}}} }}} \right)$$ is equal to

A
$$\frac{1}{2}$$
B
1
C
2
D
$$-$$2
2
JEE Main 2022 (Online) 25th July Evening Shift
+4
-1 Let $$[t]$$ denote the greatest integer less than or equal to $$t$$. Then the value of the integral $$\int_{-3}^{101}\left([\sin (\pi x)]+e^{[\cos (2 \pi x)]}\right) d x$$ is equal to

A
$$\frac{52(1-e)}{e}$$
B
$$\frac{52}{e}$$
C
$$\frac{52(2+e)}{e}$$
D
$$\frac{104}{e}$$
3
JEE Main 2022 (Online) 25th July Evening Shift
+4
-1 Let a smooth curve $$y=f(x)$$ be such that the slope of the tangent at any point $$(x, y)$$ on it is directly proportional to $$\left(\frac{-y}{x}\right)$$. If the curve passes through the points $$(1,2)$$ and $$(8,1)$$, then $$\left|y\left(\frac{1}{8}\right)\right|$$ is equal to

A
$$2 \log _{e} 2$$
B
4
C
1
D
$$4 \log _{e} 2$$
4
JEE Main 2022 (Online) 25th July Morning Shift
+4
-1 The area of the region given by

$$A=\left\{(x, y): x^{2} \leq y \leq \min \{x+2,4-3 x\}\right\}$$ is :

A
$$\frac{31}{8}$$
B
$$\frac{17}{6}$$
C
$$\frac{19}{6}$$
D
$$\frac{27}{8}$$
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination