$$\mathop {\lim }\limits_{n \to \infty } {1 \over {{2^n}}}\left( {{1 \over {\sqrt {1 - {1 \over {{2^n}}}} }} + {1 \over {\sqrt {1 - {2 \over {{2^n}}}} }} + {1 \over {\sqrt {1 - {3 \over {{2^n}}}} }} + \,\,...\,\, + \,\,{1 \over {\sqrt {1 - {{{2^n} - 1} \over {{2^n}}}} }}} \right)$$ is equal to
Let $$[t]$$ denote the greatest integer less than or equal to $$t$$. Then the value of the integral $$\int_{-3}^{101}\left([\sin (\pi x)]+e^{[\cos (2 \pi x)]}\right) d x$$ is equal to
Let a smooth curve $$y=f(x)$$ be such that the slope of the tangent at any point $$(x, y)$$ on it is directly proportional to $$\left(\frac{-y}{x}\right)$$. If the curve passes through the points $$(1,2)$$ and $$(8,1)$$, then $$\left|y\left(\frac{1}{8}\right)\right|$$ is equal to
The area of the region given by
$$A=\left\{(x, y): x^{2} \leq y \leq \min \{x+2,4-3 x\}\right\}$$ is :