Complex Numbers · Mathematics · JEE Main
Numerical
Let $\alpha, \beta$ be the roots of the equation $x^2-\mathrm{ax}-\mathrm{b}=0$ with $\operatorname{Im}(\alpha)<\operatorname{Im}(\beta)$. Let $\mathrm{P}_{\mathrm{n}}=\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}$. If $\mathrm{P}_3=-5 \sqrt{7} i, \mathrm{P}_4=-3 \sqrt{7} i, \mathrm{P}_5=11 \sqrt{7} i$ and $\mathrm{P}_6=45 \sqrt{7} i$, then $\left|\alpha^4+\beta^4\right|$ is equal to __________.
The sum of the square of the modulus of the elements in the set $$\{z=\mathrm{a}+\mathrm{ib}: \mathrm{a}, \mathrm{b} \in \mathbf{Z}, z \in \mathbf{C},|z-1| \leq 1,|z-5| \leq|z-5 \mathrm{i}|\}$$ is __________.
If $$\alpha$$ denotes the number of solutions of $$|1-i|^x=2^x$$ and $$\beta=\left(\frac{|z|}{\arg (z)}\right)$$, where $$z=\frac{\pi}{4}(1+i)^4\left[\frac{1-\sqrt{\pi} i}{\sqrt{\pi}+i}+\frac{\sqrt{\pi}-i}{1+\sqrt{\pi} i}\right], i=\sqrt{-1}$$, then the distance of the point $$(\alpha, \beta)$$ from the line $$4 x-3 y=7$$ is __________.
Let $$\alpha, \beta$$ be the roots of the equation $$x^2-\sqrt{6} x+3=0$$ such that $$\operatorname{Im}(\alpha)>\operatorname{Im}(\beta)$$. Let $$a, b$$ be integers not divisible by 3 and $$n$$ be a natural number such that $$\frac{\alpha^{99}}{\beta}+\alpha^{98}=3^n(a+i b), i=\sqrt{-1}$$. Then $$n+a+b$$ is equal to __________.
Let $$\alpha, \beta$$ be the roots of the equation $$x^2-x+2=0$$ with $$\operatorname{Im}(\alpha)>\operatorname{Im}(\beta)$$. Then $$\alpha^6+\alpha^4+\beta^4-5 \alpha^2$$ is equal to ___________.
Let the complex numbers $$\alpha$$ and $$\frac{1}{\bar{\alpha}}$$ lie on the circles $$\left|z-z_0\right|^2=4$$ and $$\left|z-z_0\right|^2=16$$ respectively, where $$z_0=1+i$$. Then, the value of $$100|\alpha|^2$$ is __________.
Let $$w=z \bar{z}+k_{1} z+k_{2} i z+\lambda(1+i), k_{1}, k_{2} \in \mathbb{R}$$. Let $$\operatorname{Re}(w)=0$$ be the circle $$\mathrm{C}$$ of radius 1 in the first quadrant touching the line $$y=1$$ and the $$y$$-axis. If the curve $$\operatorname{Im}(w)=0$$ intersects $$\mathrm{C}$$ at $$\mathrm{A}$$ and $$\mathrm{B}$$, then $$30(A B)^{2}$$ is equal to __________
Let $$\mathrm{S}=\left\{z \in \mathbb{C}-\{i, 2 i\}: \frac{z^{2}+8 i z-15}{z^{2}-3 i z-2} \in \mathbb{R}\right\}$$. If $$\alpha-\frac{13}{11} i \in \mathrm{S}, \alpha \in \mathbb{R}-\{0\}$$, then $$242 \alpha^{2}$$ is equal to _________.
For $$\alpha, \beta, z \in \mathbb{C}$$ and $$\lambda > 1$$, if $$\sqrt{\lambda-1}$$ is the radius of the circle $$|z-\alpha|^{2}+|z-\beta|^{2}=2 \lambda$$, then $$|\alpha-\beta|$$ is equal to __________.
Let $$z=1+i$$ and $$z_{1}=\frac{1+i \bar{z}}{\bar{z}(1-z)+\frac{1}{z}}$$. Then $$\frac{12}{\pi} \arg \left(z_{1}\right)$$ is equal to __________.
Let $$\alpha = 8 - 14i,A = \left\{ {z \in c:{{\alpha z - \overline \alpha \overline z } \over {{z^2} - {{\left( {\overline z } \right)}^2} - 112i}}=1} \right\}$$ and $$B = \left\{ {z \in c:\left| {z + 3i} \right| = 4} \right\}$$. Then $$\sum\limits_{z \in A \cap B} {({\mathop{\rm Re}\nolimits} z - {\mathop{\rm Im}\nolimits} z)} $$ is equal to ____________.
Let $$\mathrm{z}=a+i b, b \neq 0$$ be complex numbers satisfying $$z^{2}=\bar{z} \cdot 2^{1-z}$$. Then the least value of $$n \in N$$, such that $$z^{n}=(z+1)^{n}$$, is equal to __________.
Let $$S=\left\{z \in \mathbb{C}: z^{2}+\bar{z}=0\right\}$$. Then $$\sum\limits_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$$ is equal to ______________.
Let $$S = \{ z \in C:|z - 2| \le 1,\,z(1 + i) + \overline z (1 - i) \le 2\} $$. Let $$|z - 4i|$$ attains minimum and maximum values, respectively, at z1 $$\in$$ S and z2 $$\in$$ S. If $$5(|{z_1}{|^2} + |{z_2}{|^2}) = \alpha + \beta \sqrt 5 $$, where $$\alpha$$ and $$\beta$$ are integers, then the value of $$\alpha$$ + $$\beta$$ is equal to ___________.
Sum of squares of modulus of all the complex numbers z satisfying $$\overline z = i{z^2} + {z^2} - z$$ is equal to ___________.
The number of elements in the set {z = a + ib $$\in$$ C : a, b $$\in$$ Z and 1 < | z $$-$$ 3 + 2i | < 4} is __________.
If $${z^2} + z + 1 = 0$$, $$z \in C$$, then
$$\left| {\sum\limits_{n = 1}^{15} {{{\left( {{z^n} + {{( - 1)}^n}{1 \over {{z^n}}}} \right)}^2}} } \right|$$ is equal to _________.
Let S = {z $$\in$$ C : |z $$-$$ 3| $$\le$$ 1 and z(4 + 3i) + $$\overline z $$(4 $$-$$ 3i) $$\le$$ 24}. If $$\alpha$$ + i$$\beta$$ is the point in S which is closest to 4i, then 25($$\alpha$$ + $$\beta$$) is equal to ___________.
| z + 5 | $$ \le $$ 4 and z(1 + i) + $$\overline z $$(1 $$-$$ i) $$ \ge $$ $$-$$10, i = $$\sqrt { - 1} $$.
If the maximum value of | z + 1 |2 is $$\alpha$$ + $$\beta$$$$\sqrt 2 $$, then the value of ($$\alpha$$ + $$\beta$$) is ____________.
equation z + $$\alpha $$|z – 1| + 2i = 0 (z $$ \in $$ C and i = $$\sqrt { - 1} $$) has a solution, are p and q respectively; then 4(p2 + q2) is equal to __________.
MCQ (Single Correct Answer)
Let $ |z_1 − 8−2i| \leq 1 $ and $ |z_2−2+6i| \leq 2 $, $ z_1, z_2 \in \mathbb{C} $. Then the minimum value of $ |z_1 − z_2| $ is :
If $\alpha + i\beta$ and $\gamma + i\delta$ are the roots of $x^2 - (3 - 2i)x - (2i - 2) = 0$, $i = \sqrt{-1}$, then $\alpha \gamma + \beta \delta$ is equal to:
Let $O$ be the origin, the point $A$ be $z_1=\sqrt{3}+2 \sqrt{2} i$, the point $B\left(z_2\right)$ be such that $\sqrt{3}\left|z_2\right|=\left|z_1\right|$ and $\arg \left(z_2\right)=\arg \left(z_1\right)+\frac{\pi}{6}$. Then
If $\alpha$ and $\beta$ are the roots of the equation $2 z^2-3 z-2 i=0$, where $i=\sqrt{-1}$, then $16 \cdot \operatorname{Re}\left(\frac{\alpha^{19}+\beta^{19}+\alpha^{11}+\beta^{11}}{\alpha^{15}+\beta^{15}}\right) \cdot \operatorname{lm}\left(\frac{\alpha^{19}+\beta^{19}+\alpha^{11}+\beta^{11}}{\alpha^{15}+\beta^{15}}\right)$ is equal to
The number of complex numbers $z$, satisfying $|z|=1$ and $\left|\frac{z}{\bar{z}}+\frac{\bar{z}}{z}\right|=1$, is :
Let $\left|\frac{\bar{z}-i}{2 \bar{z}+i}\right|=\frac{1}{3}, z \in C$, be the equation of a circle with center at $C$. If the area of the triangle, whose vertices are at the points $(0,0), C$ and $(\alpha, 0)$ is 11 square units, then $\alpha^2$ equals:
Let the curve $z(1+i)+\bar{z}(1-i)=4, z \in C$, divide the region $|z-3| \leq 1$ into two parts of areas $\alpha$ and $\beta$. Then $|\alpha-\beta|$ equals :
Let $z_1, z_2$ and $z_3$ be three complex numbers on the circle $|z|=1$ with $\arg \left(z_1\right)=\frac{-\pi}{4}, \arg \left(z_2\right)=0$ and $\arg \left(z_3\right)=\frac{\pi}{4}$. If $\left|z_1 \bar{z}_2+z_2 \bar{z}_3+z_3 \bar{z}_1\right|^2=\alpha+\beta \sqrt{2}, \alpha, \beta \in Z$, then the value of $\alpha^2+\beta^2$ is :
Let $$z$$ be a complex number such that the real part of $$\frac{z-2 i}{z+2 i}$$ is zero. Then, the maximum value of $$|z-(6+8 i)|$$ is equal to
The sum of all possible values of $$\theta \in[-\pi, 2 \pi]$$, for which $$\frac{1+i \cos \theta}{1-2 i \cos \theta}$$ is purely imaginary, is equal to :
Let $$z$$ be a complex number such that $$|z+2|=1$$ and $$\operatorname{lm}\left(\frac{z+1}{z+2}\right)=\frac{1}{5}$$. Then the value of $$|\operatorname{Re}(\overline{z+2})|$$ is
If the set $$R=\{(a, b): a+5 b=42, a, b \in \mathbb{N}\}$$ has $$m$$ elements and $$\sum_\limits{n=1}^m\left(1-i^{n !}\right)=x+i y$$, where $$i=\sqrt{-1}$$, then the value of $$m+x+y$$ is
If $$z_1, z_2$$ are two distinct complex number such that $$\left|\frac{z_1-2 z_2}{\frac{1}{2}-z_1 \bar{z}_2}\right|=2$$, then
Let $$S_1=\{z \in \mathbf{C}:|z| \leq 5\}, S_2=\left\{z \in \mathbf{C}: \operatorname{Im}\left(\frac{z+1-\sqrt{3} i}{1-\sqrt{3} i}\right) \geq 0\right\}$$ and $$S_3=\{z \in \mathbf{C}: \operatorname{Re}(z) \geq 0\}$$. Then the area of the region $$S_1 \cap S_2 \cap S_3$$ is :
Consider the following two statements :
Statement I: For any two non-zero complex numbers $$z_1, z_2,(|z_1|+|z_2|)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2\left(\left|z_1\right|+\left|z_2\right|\right) \text {, and }$$
Statement II : If $$x, y, z$$ are three distinct complex numbers and $$\mathrm{a}, \mathrm{b}, \mathrm{c}$$ are three positive real numbers such that $$\frac{\mathrm{a}}{|y-z|}=\frac{\mathrm{b}}{|z-x|}=\frac{\mathrm{c}}{|x-y|}$$, then $$\frac{\mathrm{a}^2}{y-z}+\frac{\mathrm{b}^2}{z-x}+\frac{\mathrm{c}^2}{x-y}=1$$.
Between the above two statements,
The area (in sq. units) of the region $$S=\{z \in \mathbb{C}:|z-1| \leq 2 ;(z+\bar{z})+i(z-\bar{z}) \leq 2, \operatorname{lm}(z) \geq 0\}$$ is
Let $$\alpha$$ and $$\beta$$ be the sum and the product of all the non-zero solutions of the equation $$(\bar{z})^2+|z|=0, z \in C$$. Then $$4(\alpha^2+\beta^2)$$ is equal to :
Let $$z_1$$ and $$z_2$$ be two complex numbers such that $$z_1+z_2=5$$ and $$z_1^3+z_2^3=20+15 i$$ Then, $$\left|z_1^4+z_2^4\right|$$ equals -
If $$z$$ is a complex number, then the number of common roots of the equations $$z^{1985}+z^{100}+1=0$$ and $$z^3+2 z^2+2 z+1=0$$, is equal to
If $$z=x+i y, x y \neq 0$$, satisfies the equation $$z^2+i \bar{z}=0$$, then $$\left|z^2\right|$$ is equal to :
Let $$\mathrm{r}$$ and $$\theta$$ respectively be the modulus and amplitude of the complex number $$z=2-i\left(2 \tan \frac{5 \pi}{8}\right)$$, then $$(\mathrm{r}, \theta)$$ is equal to
If $$z=\frac{1}{2}-2 i$$ is such that $$|z+1|=\alpha z+\beta(1+i), i=\sqrt{-1}$$ and $$\alpha, \beta \in \mathbb{R}$$, then $$\alpha+\beta$$ is equal to
the interval $(\alpha, \beta]$, then $24(\beta-\alpha)$ is equal to :
Let $$S=\left\{z \in \mathbb{C}: \bar{z}=i\left(z^{2}+\operatorname{Re}(\bar{z})\right)\right\}$$. Then $$\sum_\limits{z \in \mathrm{S}}|z|^{2}$$ is equal to :
Let $$\mathrm{C}$$ be the circle in the complex plane with centre $$\mathrm{z}_{0}=\frac{1}{2}(1+3 i)$$ and radius $$r=1$$. Let $$\mathrm{z}_{1}=1+\mathrm{i}$$ and the complex number $$z_{2}$$ be outside the circle $$C$$ such that $$\left|z_{1}-z_{0}\right|\left|z_{2}-z_{0}\right|=1$$. If $$z_{0}, z_{1}$$ and $$z_{2}$$ are collinear, then the smaller value of $$\left|z_{2}\right|^{2}$$ is equal to :
For $$a \in \mathbb{C}$$, let $$\mathrm{A}=\{z \in \mathbb{C}: \operatorname{Re}(a+\bar{z}) > \operatorname{Im}(\bar{a}+z)\}$$ and $$\mathrm{B}=\{z \in \mathbb{C}: \operatorname{Re}(a+\bar{z})<\operatorname{Im}(\bar{a}+z)\}$$. Then among the two statements :
(S1): If $$\operatorname{Re}(a), \operatorname{Im}(a) > 0$$, then the set A contains all the real numbers
(S2) : If $$\operatorname{Re}(a), \operatorname{Im}(a) < 0$$, then the set B contains all the real numbers,
Let $$w_{1}$$ be the point obtained by the rotation of $$z_{1}=5+4 i$$ about the origin through a right angle in the anticlockwise direction, and $$w_{2}$$ be the point obtained by the rotation of $$z_{2}=3+5 i$$ about the origin through a right angle in the clockwise direction. Then the principal argument of $$w_{1}-w_{2}$$ is equal to :
Let $$S = \left\{ {z = x + iy:{{2z - 3i} \over {4z + 2i}}\,\mathrm{is\,a\,real\,number}} \right\}$$. Then which of the following is NOT correct?
Let the complex number $$z = x + iy$$ be such that $${{2z - 3i} \over {2z + i}}$$ is purely imaginary. If $${x} + {y^2} = 0$$, then $${y^4} + {y^2} - y$$ is equal to :
Let $$A=\left\{\theta \in(0,2 \pi): \frac{1+2 i \sin \theta}{1-i \sin \theta}\right.$$ is purely imaginary $$\}$$. Then the sum of the elements in $$\mathrm{A}$$ is :
If for $$z=\alpha+i \beta,|z+2|=z+4(1+i)$$, then $$\alpha+\beta$$ and $$\alpha \beta$$ are the roots of the equation :
Let $$a \neq b$$ be two non-zero real numbers. Then the number of elements in the set $$X=\left\{z \in \mathbb{C}: \operatorname{Re}\left(a z^{2}+b z\right)=a\right.$$ and $$\left.\operatorname{Re}\left(b z^{2}+a z\right)=b\right\}$$ is equal to :
Let $$a,b$$ be two real numbers such that $$ab < 0$$. IF the complex number $$\frac{1+ai}{b+i}$$ is of unit modulus and $$a+ib$$ lies on the circle $$|z-1|=|2z|$$, then a possible value of $$\frac{1+[a]}{4b}$$, where $$[t]$$ is greatest integer function, is :
If the center and radius of the circle $$\left| {{{z - 2} \over {z - 3}}} \right| = 2$$ are respectively $$(\alpha,\beta)$$ and $$\gamma$$, then $$3(\alpha+\beta+\gamma)$$ is equal to :
For all $$z \in C$$ on the curve $$C_{1}:|z|=4$$, let the locus of the point $$z+\frac{1}{z}$$ be the curve $$\mathrm{C}_{2}$$. Then :
For two non-zero complex numbers $$z_{1}$$ and $$z_{2}$$, if $$\operatorname{Re}\left(z_{1} z_{2}\right)=0$$ and $$\operatorname{Re}\left(z_{1}+z_{2}\right)=0$$, then which of the following are possible?
A. $$\operatorname{Im}\left(z_{1}\right)>0$$ and $$\operatorname{Im}\left(z_{2}\right) > 0$$
B. $$\operatorname{Im}\left(z_{1}\right) < 0$$ and $$\operatorname{Im}\left(z_{2}\right) > 0$$
C. $$\operatorname{Im}\left(z_{1}\right) > 0$$ and $$\operatorname{Im}\left(z_{2}\right) < 0$$
D. $$\operatorname{Im}\left(z_{1}\right) < 0$$ and $$\operatorname{Im}\left(z_{2}\right) < 0$$
Choose the correct answer from the options given below :
Let $$z$$ be a complex number such that $$\left| {{{z - 2i} \over {z + i}}} \right| = 2,z \ne - i$$. Then $$z$$ lies on the circle of radius 2 and centre :
Let $$\mathrm{z_1=2+3i}$$ and $$\mathrm{z_2=3+4i}$$. The set $$\mathrm{S = \left\{ {z \in \mathbb{C}:{{\left| {z - {z_1}} \right|}^2} - {{\left| {z - {z_2}} \right|}^2} = {{\left| {{z_1} - {z_2}} \right|}^2}} \right\}}$$ represents a
The value of $${\left( {{{1 + \sin {{2\pi } \over 9} + i\cos {{2\pi } \over 9}} \over {1 + \sin {{2\pi } \over 9} - i\cos {{2\pi } \over 9}}}} \right)^3}$$ is
Let $$\mathrm{p,q\in\mathbb{R}}$$ and $${\left( {1 - \sqrt 3 i} \right)^{200}} = {2^{199}}(p + iq),i = \sqrt { - 1} $$ then $$\mathrm{p+q+q^2}$$ and $$\mathrm{p-q+q^2}$$ are roots of the equation.
If $$z \neq 0$$ be a complex number such that $$\left|z-\frac{1}{z}\right|=2$$, then the maximum value of $$|z|$$ is :
Let $$\mathrm{S}=\{z=x+i y:|z-1+i| \geq|z|,|z|<2,|z+i|=|z-1|\}$$. Then the set of all values of $$x$$, for which $$w=2 x+i y \in \mathrm{S}$$ for some $$y \in \mathbb{R}$$, is :
If $$z=2+3 i$$, then $$z^{5}+(\bar{z})^{5}$$ is equal to :
Let $$S_{1}=\left\{z_{1} \in \mathbf{C}:\left|z_{1}-3\right|=\frac{1}{2}\right\}$$ and $$S_{2}=\left\{z_{2} \in \mathbf{C}:\left|z_{2}-\right| z_{2}+1||=\left|z_{2}+\right| z_{2}-1||\right\}$$. Then, for $$z_{1} \in S_{1}$$ and $$z_{2} \in S_{2}$$, the least value of $$\left|z_{2}-z_{1}\right|$$ is :
Let S be the set of all $$(\alpha, \beta), \pi<\alpha, \beta<2 \pi$$, for which the complex number $$\frac{1-i \sin \alpha}{1+2 i \sin \alpha}$$ is purely imaginary and $$\frac{1+i \cos \beta}{1-2 i \cos \beta}$$ is purely real. Let $$Z_{\alpha \beta}=\sin 2 \alpha+i \cos 2 \beta,(\alpha, \beta) \in S$$. Then $$\sum\limits_{(\alpha, \beta) \in S}\left(i Z_{\alpha \beta}+\frac{1}{i \bar{Z}_{\alpha \beta}}\right)$$ is equal to :
Let the minimum value $$v_{0}$$ of $$v=|z|^{2}+|z-3|^{2}+|z-6 i|^{2}, z \in \mathbb{C}$$ is attained at $${ }{z}=z_{0}$$. Then $$\left|2 z_{0}^{2}-\bar{z}_{0}^{3}+3\right|^{2}+v_{0}^{2}$$ is equal to :
If $$z=x+i y$$ satisfies $$|z|-2=0$$ and $$|z-i|-|z+5 i|=0$$, then :
Let O be the origin and A be the point $${z_1} = 1 + 2i$$. If B is the point $${z_2}$$, $${\mathop{\rm Re}\nolimits} ({z_2}) < 0$$, such that OAB is a right angled isosceles triangle with OB as hypotenuse, then which of the following is NOT true?
For $$z \in \mathbb{C}$$ if the minimum value of $$(|z-3 \sqrt{2}|+|z-p \sqrt{2} i|)$$ is $$5 \sqrt{2}$$, then a value Question: of $$p$$ is _____________.
For $$\mathrm{n} \in \mathbf{N}$$, let $$\mathrm{S}_{\mathrm{n}}=\left\{z \in \mathbf{C}:|z-3+2 i|=\frac{\mathrm{n}}{4}\right\}$$ and $$\mathrm{T}_{\mathrm{n}}=\left\{z \in \mathbf{C}:|z-2+3 i|=\frac{1}{\mathrm{n}}\right\}$$. Then the number of elements in the set $$\left\{n \in \mathbf{N}: S_{n} \cap T_{n}=\phi\right\}$$ is :
The real part of the complex number $${{{{(1 + 2i)}^8}\,.\,{{(1 - 2i)}^2}} \over {(3 + 2i)\,.\,\overline {(4 - 6i)} }}$$ is equal to :
Let arg(z) represent the principal argument of the complex number z. Then, |z| = 3 and arg(z $$-$$ 1) $$-$$ arg(z + 1) = $${\pi \over 4}$$ intersect :
Let $$\alpha$$ and $$\beta$$ be the roots of the equation x2 + (2i $$-$$ 1) = 0. Then, the value of |$$\alpha$$8 + $$\beta$$8| is equal to :
The number of points of intersection of
$$|z - (4 + 3i)| = 2$$ and $$|z| + |z - 4| = 6$$, z $$\in$$ C, is :
The area of the polygon, whose vertices are the non-real roots of the equation $$\overline z = i{z^2}$$ is :
Let $$A = \left\{ {z \in C:\left| {{{z + 1} \over {z - 1}}} \right| < 1} \right\}$$ and $$B = \left\{ {z \in C:\arg \left( {{{z - 1} \over {z + 1}}} \right) = {{2\pi } \over 3}} \right\}$$. Then A $$\cap$$ B is :
Let z1 and z2 be two complex numbers such that $${\overline z _1} = i{\overline z _2}$$ and $$\arg \left( {{{{z_1}} \over {{{\overline z }_2}}}} \right) = \pi $$. Then :
Let a circle C in complex plane pass through the points $${z_1} = 3 + 4i$$, $${z_2} = 4 + 3i$$ and $${z_3} = 5i$$. If $$z( \ne {z_1})$$ is a point on C such that the line through z and z1 is perpendicular to the line through z2 and z3, then $$arg(z)$$ is equal to :
Let $$A = \{ z \in C:1 \le |z - (1 + i)| \le 2\} $$
and $$B = \{ z \in A:|z - (1 - i)| = 1\} $$. Then, B :
S1 = {z$$\in$$C : |z $$-$$ 2| $$\le$$ 1} and
S2 = {z$$\in$$C : z(1 + i) + $$\overline z $$(1 $$-$$ i) $$\ge$$ 4}.
Then, the maximum value of $${\left| {z - {5 \over 2}} \right|^2}$$ for z$$\in$$S1 $$\cap$$ S2 is equal to :
$${S_1} = \{ z \in C||z - 3 - 2i{|^2} = 8\} $$
$${S_2} = \{ z \in C|{\mathop{\rm Re}\nolimits} (z) \ge 5\} $$ and
$${S_3} = \{ z \in C||z - \overline z | \ge 8\} $$.
Then the number of elements in $${S_1} \cap {S_2} \cap {S_3}$$ is equal to :
(Here arg(z) denotes the principal argument of complex number z)
S1 = {z$$\in$$C : |z $$-$$ 1| $$ \le $$ $$\sqrt 2 $$}
S2 = {z$$\in$$C : Re((1 $$-$$ i)z) $$ \ge $$ 1}
S3 = {z$$\in$$C : Im(z) $$ \le $$ 1}
Then the set S1 $$\cap$$ S2 $$\cap$$ S3 :
satisfy $${\log _{{1 \over {\sqrt 2 }}}}\left( {{{|z| + 11} \over {{{(|z| - 1)}^2}}}} \right) \le 2$$. Then, the largest value of |z| is equal to ____________.
{z = x + iy $$ \in $$ C : |z| – Re(z) $$ \le $$ 1} is also given by the
inequality : {z = x + iy $$ \in $$ C : |z| – Re(z) $$ \le $$ 1}
$${\left( {2 + \alpha } \right)^4} = a + b\alpha $$
where $$\alpha = {{ - 1 + i\sqrt 3 } \over 2}$$ then a + b is equal to :
by Re(u) + Im(u) = 1 intersects the y-axis at the points P and Q where PQ = 5, then the value of k is :
Re(z1) = |z1 – 1|, Re(z2) = |z2 – 1| , and
arg(z1 - z2) = $${\pi \over 6}$$, then Im(z1 + z2 ) is equal to :
$${\left( {3 + 2\sqrt { - 54} } \right)^{{1 \over 2}}} - {\left( {3 - 2\sqrt { - 54} } \right)^{{1 \over 2}}}$$ can be :
$${\left( {{{1 + \sin {{2\pi } \over 9} + i\cos {{2\pi } \over 9}} \over {1 + \sin {{2\pi } \over 9} - i\cos {{2\pi } \over 9}}}} \right)^3}$$ is :
$$\left| {{{z - i} \over {z + 2i}}} \right| = 1$$ and |z| = $${5 \over 2}$$.
Then the value of |z + 3i| is :
sin$$\theta $$ + icos$$\theta $$ is :
If $$\omega = {{5 + 3z} \over {5(1 - z)}}$$z, then :
$$S = \left\{ {{{\alpha + i} \over {\alpha - i}}:\alpha \in R} \right\}(i = \sqrt { - 1} )$$ lie on a :
then (1 + iz + z5 + iz8)9 is equal to :
A = $$\left\{ {\theta \in \left( { - {\pi \over 2},\pi } \right):{{3 + 2i\sin \theta } \over {1 - 2i\sin \theta }}is\,purely\,imaginary} \right\}$$
. Then the sum of the elements in A is :
x2 - x + 1 = 0, then $${\alpha ^{101}} + {\beta ^{107}}$$ is equal to :
Im $$\left( {{{iz - 2} \over {z - i}}} \right)$$ + 1 = 0, z $$ \in $$ C, z $$ \ne $$ i
represents a part of a circle having radius equal to :
$$\left| {\matrix{ 1 & 1 & 1 \cr 1 & { - {\omega ^2} - 1} & {{\omega ^2}} \cr 1 & {{\omega ^2}} & {{\omega ^7}} \cr } } \right| = 3k$$,
then k is equal to :
$${{\left( {{x \over p} + {y \over q}} \right)} \over {\left( {{p^2} + {q^2}} \right)}}$$ is equal to :
($$z,\,{z_1}\,\& \,{z_2}\,$$ are complex numbers) will be :