MCQ (Single Correct Answer)

1

Let a straight line $L$ pass through the point $P(2, -1, 3)$ and be perpendicular to the lines $ \frac{x - 1}{2} = \frac{y + 1}{1} = \frac{z - 3}{-2} $ and $ \frac{x - 3}{1} = \frac{y - 2}{3} = \frac{z + 2}{4} $. If the line $L$ intersects the $yz$-plane at the point $Q$, then the distance between the points $P$ and $Q$ is:

JEE Main 2025 (Online) 29th January Evening Shift
2

Let P be the foot of the perpendicular from the point $(1,2,2)$ on the line $\mathrm{L}: \frac{x-1}{1}=\frac{y+1}{-1}=\frac{z-2}{2}$.
Let the line $\vec{r}=(-\hat{i}+\hat{j}-2 \hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}), \lambda \in \mathbf{R}$, intersect the line L at Q . Then $2(\mathrm{PQ})^2$ is equal to :

JEE Main 2025 (Online) 29th January Evening Shift
3

Let $\mathrm{L}_1: \frac{x-1}{1}=\frac{y-2}{-1}=\frac{z-1}{2}$ and $\mathrm{L}_2: \frac{x+1}{-1}=\frac{y-2}{2}=\frac{z}{1}$ be two lines.

Let $L_3$ be a line passing through the point $(\alpha, \beta, \gamma)$ and be perpendicular to both $L_1$ and $L_2$. If $L_3$ intersects $\mathrm{L}_1$, then $|5 \alpha-11 \beta-8 \gamma|$ equals :

JEE Main 2025 (Online) 29th January Morning Shift
4

The square of the distance of the point $ \left( \frac{15}{7}, \frac{32}{7}, 7 \right) $ from the line $ \frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} $ in the direction of the vector $ \hat{i} + 4\hat{j} + 7\hat{k} $ is:

JEE Main 2025 (Online) 28th January Evening Shift
5

Let $\mathrm{A}(x, y, z)$ be a point in $x y$-plane, which is equidistant from three points $(0,3,2),(2,0,3)$ and $(0,0,1)$.

Let $\mathrm{B}=(1,4,-1)$ and $\mathrm{C}=(2,0,-2)$. Then among the statements

(S1) : $\triangle \mathrm{ABC}$ is an isosceles right angled triangle, and

(S2) : the area of $\triangle \mathrm{ABC}$ is $\frac{9 \sqrt{2}}{2}$,

JEE Main 2025 (Online) 28th January Morning Shift
6

If the image of the point $(4,4,3)$ in the line $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-1}{3}$ is $(\alpha, \beta, \gamma)$, then $\alpha+\beta+\gamma$ is equal to

JEE Main 2025 (Online) 28th January Morning Shift
7

Let in a $\triangle A B C$, the length of the side $A C$ be 6 , the vertex $B$ be $(1,2,3)$ and the vertices $A, C$ lie on the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$. Then the area (in sq. units) of $\triangle A B C$ is:

JEE Main 2025 (Online) 24th January Morning Shift
8

Let the line passing through the points $(-1,2,1)$ and parallel to the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z}{4}$ intersect the line $\frac{x+2}{3}=\frac{y-3}{2}=\frac{z-4}{1}$ at the point $P$. Then the distance of $P$ from the point $Q(4,-5,1)$ is

JEE Main 2025 (Online) 24th January Morning Shift
9

If the square of the shortest distance between the lines $\frac{x-2}{1}=\frac{y-1}{2}=\frac{z+3}{-3}$ and $\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{-5}$ is $\frac{m}{n}$, where $m$, $n$ are coprime numbers, then $m+n$ is equal to :

JEE Main 2025 (Online) 23rd January Evening Shift
10

The distance of the line $\frac{x-2}{2}=\frac{y-6}{3}=\frac{z-3}{4}$ from the point $(1,4,0)$ along the line $\frac{x}{1}=\frac{y-2}{2}=\frac{z+3}{3}$ is :

JEE Main 2025 (Online) 23rd January Evening Shift
11

Let P be the foot of the perpendicular from the point $\mathrm{Q}(10,-3,-1)$ on the line $\frac{x-3}{7}=\frac{y-2}{-1}=\frac{z+1}{-2}$. Then the area of the right angled triangle $P Q R$, where $R$ is the point $(3,-2,1)$, is

JEE Main 2025 (Online) 23rd January Morning Shift
12

Let a line pass through two distinct points $P(-2,-1,3)$ and $Q$, and be parallel to the vector $3 \hat{i}+2 \hat{j}+2 \hat{k}$. If the distance of the point Q from the point $\mathrm{R}(1,3,3)$ is 5 , then the square of the area of $\triangle P Q R$ is equal to :

JEE Main 2025 (Online) 22nd January Evening Shift
13

The perpendicular distance, of the line $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z+3}{2}$ from the point $\mathrm{P}(2,-10,1)$, is :

JEE Main 2025 (Online) 22nd January Evening Shift
14

Let $\mathrm{L}_1: \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\mathrm{L}_2: \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$ be two lines. Then which of the following points lies on the line of the shortest distance between $\mathrm{L}_1$ and $\mathrm{L}_2$ ?

JEE Main 2025 (Online) 22nd January Morning Shift
15

Consider the line $$\mathrm{L}$$ passing through the points $$(1,2,3)$$ and $$(2,3,5)$$. The distance of the point $$\left(\frac{11}{3}, \frac{11}{3}, \frac{19}{3}\right)$$ from the line $$\mathrm{L}$$ along the line $$\frac{3 x-11}{2}=\frac{3 y-11}{1}=\frac{3 z-19}{2}$$ is equal to

JEE Main 2024 (Online) 9th April Evening Shift
16

The shortest distance between the lines $$\frac{x-3}{4}=\frac{y+7}{-11}=\frac{z-1}{5}$$ and $$\frac{x-5}{3}=\frac{y-9}{-6}=\frac{z+2}{1}$$ is:

JEE Main 2024 (Online) 9th April Morning Shift
17

Let the line $$\mathrm{L}$$ intersect the lines $$x-2=-y=z-1,2(x+1)=2(y-1)=z+1$$ and be parallel to the line $$\frac{x-2}{3}=\frac{y-1}{1}=\frac{z-2}{2}$$. Then which of the following points lies on $$\mathrm{L}$$ ?

JEE Main 2024 (Online) 9th April Morning Shift
18

If the shortest distance between the lines $$\frac{x-\lambda}{2}=\frac{y-4}{3}=\frac{z-3}{4}$$ and $$\frac{x-2}{4}=\frac{y-4}{6}=\frac{z-7}{8}$$ is $$\frac{13}{\sqrt{29}}$$, then a value of $$\lambda$$ is :

JEE Main 2024 (Online) 8th April Evening Shift
19

Let $$P(x, y, z)$$ be a point in the first octant, whose projection in the $$x y$$-plane is the point $$Q$$. Let $$O P=\gamma$$; the angle between $$O Q$$ and the positive $$x$$-axis be $$\theta$$; and the angle between $$O P$$ and the positive $$z$$-axis be $$\phi$$, where $$O$$ is the origin. Then the distance of $$P$$ from the $$x$$-axis is

JEE Main 2024 (Online) 8th April Morning Shift
20

If the shortest distance between the lines

$$\begin{array}{ll} L_1: \vec{r}=(2+\lambda) \hat{i}+(1-3 \lambda) \hat{j}+(3+4 \lambda) \hat{k}, & \lambda \in \mathbb{R} \\ L_2: \vec{r}=2(1+\mu) \hat{i}+3(1+\mu) \hat{j}+(5+\mu) \hat{k}, & \mu \in \mathbb{R} \end{array}$$

is $$\frac{m}{\sqrt{n}}$$, where $$\operatorname{gcd}(m, n)=1$$, then the value of $$m+n$$ equals

JEE Main 2024 (Online) 8th April Morning Shift
21

Let $$\mathrm{P}(\alpha, \beta, \gamma)$$ be the image of the point $$\mathrm{Q}(3,-3,1)$$ in the line $$\frac{x-0}{1}=\frac{y-3}{1}=\frac{z-1}{-1}$$ and $$\mathrm{R}$$ be the point $$(2,5,-1)$$. If the area of the triangle $$\mathrm{PQR}$$ is $$\lambda$$ and $$\lambda^2=14 \mathrm{~K}$$, then $$\mathrm{K}$$ is equal to :

JEE Main 2024 (Online) 6th April Evening Shift
22

If $$A(3,1,-1), B\left(\frac{5}{3}, \frac{7}{3}, \frac{1}{3}\right), C(2,2,1)$$ and $$D\left(\frac{10}{3}, \frac{2}{3}, \frac{-1}{3}\right)$$ are the vertices of a quadrilateral $$A B C D$$, then its area is

JEE Main 2024 (Online) 6th April Morning Shift
23

The shortest distance between the lines $$\frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5}$$ and $$\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3}$$ is

JEE Main 2024 (Online) 6th April Morning Shift
24

Let $$(\alpha, \beta, \gamma)$$ be the image of the point $$(8,5,7)$$ in the line $$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-2}{5}$$. Then $$\alpha+\beta+\gamma$$ is equal to :

JEE Main 2024 (Online) 5th April Evening Shift
25

If the line $$\frac{2-x}{3}=\frac{3 y-2}{4 \lambda+1}=4-z$$ makes a right angle with the line $$\frac{x+3}{3 \mu}=\frac{1-2 y}{6}=\frac{5-z}{7}$$, then $$4 \lambda+9 \mu$$ is equal to :

JEE Main 2024 (Online) 5th April Morning Shift
26

Let $$\mathrm{d}$$ be the distance of the point of intersection of the lines $$\frac{x+6}{3}=\frac{y}{2}=\frac{z+1}{1}$$ and $$\frac{x-7}{4}=\frac{y-9}{3}=\frac{z-4}{2}$$ from the point $$(7,8,9)$$. Then $$\mathrm{d}^2+6$$ is equal to :

JEE Main 2024 (Online) 5th April Morning Shift
27

Let $$\mathrm{P}$$ be the point of intersection of the lines $$\frac{x-2}{1}=\frac{y-4}{5}=\frac{z-2}{1}$$ and $$\frac{x-3}{2}=\frac{y-2}{3}=\frac{z-3}{2}$$. Then, the shortest distance of $$\mathrm{P}$$ from the line $$4 x=2 y=z$$ is

JEE Main 2024 (Online) 4th April Evening Shift
28

Let the point, on the line passing through the points $$P(1,-2,3)$$ and $$Q(5,-4,7)$$, farther from the origin and at a distance of 9 units from the point $$P$$, be $$(\alpha, \beta, \gamma)$$. Then $$\alpha^2+\beta^2+\gamma^2$$ is equal to :

JEE Main 2024 (Online) 4th April Morning Shift
29
Consider a $\triangle A B C$ where $A(1,3,2), B(-2,8,0)$ and $C(3,6,7)$. If the angle bisector of $\angle B A C$ meets the line $B C$ at $D$, then the length of the projection of the vector $\overrightarrow{A D}$ on the vector $\overrightarrow{A C}$ is :
JEE Main 2024 (Online) 1st February Evening Shift
30
Let $\mathrm{P}$ and $\mathrm{Q}$ be the points on the line $\frac{x+3}{8}=\frac{y-4}{2}=\frac{z+1}{2}$ which are at a distance of 6 units from the point $\mathrm{R}(1,2,3)$. If the centroid of the triangle PQR is $(\alpha, \beta, \gamma)$, then $\alpha^2+\beta^2+\gamma^2$ is :
JEE Main 2024 (Online) 1st February Evening Shift
31
If the mirror image of the point $P(3,4,9)$ in the line

$\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-2}{1}$ is $(\alpha, \beta, \gamma)$, then 14 $(\alpha+\beta+\gamma)$ is :
JEE Main 2024 (Online) 1st February Evening Shift
32
If the shortest distance between the lines

$\frac{x-\lambda}{-2}=\frac{y-2}{1}=\frac{z-1}{1}$ and $\frac{x-\sqrt{3}}{1}=\frac{y-1}{-2}=\frac{z-2}{1}$ is 1 , then the sum of all possible values of $\lambda$ is :
JEE Main 2024 (Online) 1st February Morning Shift
33

Let $$(\alpha, \beta, \gamma)$$ be the mirror image of the point $$(2,3,5)$$ in the line $$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$$. Then, $$2 \alpha+3 \beta+4 \gamma$$ is equal to

JEE Main 2024 (Online) 31st January Evening Shift
34

The shortest distance, between lines $$L_1$$ and $$L_2$$, where $$L_1: \frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+4}{2}$$ and $$L_2$$ is the line, passing through the points $$\mathrm{A}(-4,4,3), \mathrm{B}(-1,6,3)$$ and perpendicular to the line $$\frac{x-3}{-2}=\frac{y}{3}=\frac{z-1}{1}$$, is

JEE Main 2024 (Online) 31st January Evening Shift
35

Let $$L_1: \vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\lambda(\hat{i}-\hat{j}+2 \hat{k}), \lambda \in \mathbb{R}$$,

$$L_2: \vec{r}=(\hat{j}-\hat{k})+\mu(3 \hat{i}+\hat{j}+p \hat{k}), \mu \in \mathbb{R} \text {, and } L_3: \vec{r}=\delta(\ell \hat{i}+m \hat{j}+n \hat{k}), \delta \in \mathbb{R}$$

be three lines such that $$L_1$$ is perpendicular to $$L_2$$ and $$L_3$$ is perpendicular to both $$L_1$$ and $$L_2$$. Then, the point which lies on $$L_3$$ is

JEE Main 2024 (Online) 30th January Evening Shift
36

Let $$(\alpha, \beta, \gamma)$$ be the foot of perpendicular from the point $$(1,2,3)$$ on the line $$\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}$$. Then $$19(\alpha+\beta+\gamma)$$ is equal to :

JEE Main 2024 (Online) 30th January Morning Shift
37

Let $$A(2,3,5)$$ and $$C(-3,4,-2)$$ be opposite vertices of a parallelogram $$A B C D$$. If the diagonal $$\overrightarrow{\mathrm{BD}}=\hat{i}+2 \hat{j}+3 \hat{k}$$, then the area of the parallelogram is equal to :

JEE Main 2024 (Online) 30th January Morning Shift
38

Let $$\mathrm{P}(3,2,3), \mathrm{Q}(4,6,2)$$ and $$\mathrm{R}(7,3,2)$$ be the vertices of $$\triangle \mathrm{PQR}$$. Then, the angle $$\angle \mathrm{QPR}$$ is

JEE Main 2024 (Online) 29th January Evening Shift
39

Let $$O$$ be the origin and the position vectors of $$A$$ and $$B$$ be $$2 \hat{i}+2 \hat{j}+\hat{k}$$ and $$2 \hat{i}+4 \hat{j}+4 \hat{k}$$ respectively. If the internal bisector of $$\angle \mathrm{AOB}$$ meets the line $$\mathrm{AB}$$ at $$\mathrm{C}$$, then the length of $$O C$$ is

JEE Main 2024 (Online) 29th January Morning Shift
40

Let $$P Q R$$ be a triangle with $$R(-1,4,2)$$. Suppose $$M(2,1,2)$$ is the mid point of $$\mathrm{PQ}$$. The distance of the centroid of $$\triangle \mathrm{PQR}$$ from the point of intersection of the lines $$\frac{x-2}{0}=\frac{y}{2}=\frac{z+3}{-1}$$ and $$\frac{x-1}{1}=\frac{y+3}{-3}=\frac{z+1}{1}$$ is

JEE Main 2024 (Online) 29th January Morning Shift
41

Let the image of the point $$(1,0,7)$$ in the line $$\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$$ be the point $$(\alpha, \beta, \gamma)$$. Then which one of the following points lies on the line passing through $$(\alpha, \beta, \gamma)$$ and making angles $$\frac{2 \pi}{3}$$ and $$\frac{3 \pi}{4}$$ with $$y$$-axis and $$z$$-axis respectively and an acute angle with $$x$$-axis ?

JEE Main 2024 (Online) 27th January Evening Shift
42
The distance, of the point $(7,-2,11)$ from the line

$\frac{x-6}{1}=\frac{y-4}{0}=\frac{z-8}{3}$ along the line $\frac{x-5}{2}=\frac{y-1}{-3}=\frac{z-5}{6}$, is :
JEE Main 2024 (Online) 27th January Morning Shift
43
If the shortest distance between the lines

$\frac{x-4}{1}=\frac{y+1}{2}=\frac{z}{-3}$ and $\frac{x-\lambda}{2}=\frac{y+1}{4}=\frac{z-2}{-5}$ is $\frac{6}{\sqrt{5}}$, then the sum of all possible values of $\lambda$ is :
JEE Main 2024 (Online) 27th January Morning Shift
44
Let the foot of perpendicular of the point $P(3,-2,-9)$ on the plane passing through the points $(-1,-2,-3),(9,3,4),(9,-2,1)$ be $Q(\alpha, \beta, \gamma)$. Then the distance of $Q$ from the origin is :
JEE Main 2023 (Online) 15th April Morning Shift
45
Let the system of linear equations

$-x+2 y-9 z=7$

$-x+3 y+7 z=9$

$-2 x+y+5 z=8$

$-3 x+y+13 z=\lambda$

has a unique solution $x=\alpha, y=\beta, z=\gamma$. Then the distance of the point

$(\alpha, \beta, \gamma)$ from the plane $2 x-2 y+z=\lambda$ is :
JEE Main 2023 (Online) 15th April Morning Shift
46
Let $\mathrm{S}$ be the set of all values of $\lambda$, for which the shortest distance between

the lines $\frac{x-\lambda}{0}=\frac{y-3}{4}=\frac{z+6}{1}$ and $\frac{x+\lambda}{3}=\frac{y}{-4}=\frac{z-6}{0}$ is 13. Then $8\left|\sum\limits_{\lambda \in S} \lambda\right|$ is equal to :
JEE Main 2023 (Online) 15th April Morning Shift
47

The line, that is coplanar to the line $$\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$$, is :

JEE Main 2023 (Online) 13th April Evening Shift
48

The plane, passing through the points $$(0,-1,2)$$ and $$(-1,2,1)$$ and parallel to the line passing through $$(5,1,-7)$$ and $$(1,-1,-1)$$, also passes through the point :

JEE Main 2023 (Online) 13th April Evening Shift
49

Let $$\mathrm{N}$$ be the foot of perpendicular from the point $$\mathrm{P}(1,-2,3)$$ on the line passing through the points $$(4,5,8)$$ and $$(1,-7,5)$$. Then the distance of $$N$$ from the plane $$2 x-2 y+z+5=0$$ is :

JEE Main 2023 (Online) 13th April Evening Shift
50

Let the equation of plane passing through the line of intersection of the planes $$x+2 y+a z=2$$ and $$x-y+z=3$$ be $$5 x-11 y+b z=6 a-1$$. For $$c \in \mathbb{Z}$$, if the distance of this plane from the point $$(a,-c, c)$$ is $$\frac{2}{\sqrt{a}}$$, then $$\frac{a+b}{c}$$ is equal to :

JEE Main 2023 (Online) 13th April Morning Shift
51

The distance of the point $$(-1,2,3)$$ from the plane $$\vec{r} \cdot(\hat{i}-2 \hat{j}+3 \hat{k})=10$$ parallel to the line of the shortest distance between the lines $$\vec{r}=(\hat{i}-\hat{j})+\lambda(2 \hat{i}+\hat{k})$$ and $$\vec{r}=(2 \hat{i}-\hat{j})+\mu(\hat{i}-\hat{j}+\hat{k})$$ is :

JEE Main 2023 (Online) 13th April Morning Shift
52

Let the lines $$l_{1}: \frac{x+5}{3}=\frac{y+4}{1}=\frac{z-\alpha}{-2}$$ and $$l_{2}: 3 x+2 y+z-2=0=x-3 y+2 z-13$$ be coplanar. If the point $$\mathrm{P}(a, b, c)$$ on $$l_{1}$$ is nearest to the point $$\mathrm{Q}(-4,-3,2)$$, then $$|a|+|b|+|c|$$ is equal to

JEE Main 2023 (Online) 12th April Morning Shift
53

Let the plane P: $$4 x-y+z=10$$ be rotated by an angle $$\frac{\pi}{2}$$ about its line of intersection with the plane $$x+y-z=4$$. If $$\alpha$$ is the distance of the point $$(2,3,-4)$$ from the new position of the plane $$\mathrm{P}$$, then $$35 \alpha$$ is equal to :

JEE Main 2023 (Online) 12th April Morning Shift
54

Let the line passing through the points $$\mathrm{P}(2,-1,2)$$ and $$\mathrm{Q}(5,3,4)$$ meet the plane $$x-y+z=4$$ at the point $$\mathrm{R}$$. Then the distance of the point $$\mathrm{R}$$ from the plane $$x+2 y+3 z+2=0$$ measured parallel to the line $$\frac{x-7}{2}=\frac{y+3}{2}=\frac{z-2}{1}$$ is equal to :

JEE Main 2023 (Online) 11th April Evening Shift
55

Let P be the plane passing through the points $$(5,3,0),(13,3,-2)$$ and $$(1,6,2)$$. For $$\alpha \in \mathbb{N}$$, if the distances of the points $$\mathrm{A}(3,4, \alpha)$$ and $$\mathrm{B}(2, \alpha, a)$$ from the plane P are 2 and 3 respectively, then the positive value of a is :

JEE Main 2023 (Online) 11th April Evening Shift
56

Let $$(\alpha, \beta, \gamma)$$ be the image of the point $$\mathrm{P}(2,3,5)$$ in the plane $$2 x+y-3 z=6$$. Then $$\alpha+\beta+\gamma$$ is equal to :

JEE Main 2023 (Online) 11th April Morning Shift
57

If equation of the plane that contains the point $$(-2,3,5)$$ and is perpendicular to each of the planes $$2 x+4 y+5 z=8$$ and $$3 x-2 y+3 z=5$$ is $$\alpha x+\beta y+\gamma z+97=0$$ then $$\alpha+\beta+\gamma=$$

JEE Main 2023 (Online) 11th April Morning Shift
58

Let the image of the point $$\mathrm{P}(1,2,6)$$ in the plane passing through the points $$\mathrm{A}(1,2,0), \mathrm{B}(1,4,1)$$ and $$\mathrm{C}(0,5,1)$$ be $$\mathrm{Q}(\alpha, \beta, \gamma)$$. Then $$\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)$$ is equal to :

JEE Main 2023 (Online) 10th April Evening Shift
59

Let the line $$\frac{x}{1}=\frac{6-y}{2}=\frac{z+8}{5}$$ intersect the lines $$\frac{x-5}{4}=\frac{y-7}{3}=\frac{z+2}{1}$$ and $$\frac{x+3}{6}=\frac{3-y}{3}=\frac{z-6}{1}$$ at the points $$\mathrm{A}$$ and $$\mathrm{B}$$ respectively. Then the distance of the mid-point of the line segment $$\mathrm{AB}$$ from the plane $$2 x-2 y+z=14$$ is :

JEE Main 2023 (Online) 10th April Evening Shift
60

The shortest distance between the lines $${{x + 2} \over 1} = {y \over { - 2}} = {{z - 5} \over 2}$$ and $${{x - 4} \over 1} = {{y - 1} \over 2} = {{z + 3} \over 0}$$ is :

JEE Main 2023 (Online) 10th April Morning Shift
61

Let two vertices of a triangle ABC be (2, 4, 6) and (0, $$-$$2, $$-$$5), and its centroid be (2, 1, $$-$$1). If the image of the third vertex in the plane $$x+2y+4z=11$$ is $$(\alpha,\beta,\gamma)$$, then $$\alpha\beta+\beta\gamma+\gamma\alpha$$ is equal to :

JEE Main 2023 (Online) 10th April Morning Shift
62

Let P be the point of intersection of the line $${{x + 3} \over 3} = {{y + 2} \over 1} = {{1 - z} \over 2}$$ and the plane $$x+y+z=2$$. If the distance of the point P from the plane $$3x - 4y + 12z = 32$$ is q, then q and 2q are the roots of the equation :

JEE Main 2023 (Online) 10th April Morning Shift
63

For $$\mathrm{a}, \mathrm{b} \in \mathbb{Z}$$ and $$|\mathrm{a}-\mathrm{b}| \leq 10$$, let the angle between the plane $$\mathrm{P}: \mathrm{ax}+y-\mathrm{z}=\mathrm{b}$$ and the line $$l: x-1=\mathrm{a}-y=z+1$$ be $$\cos ^{-1}\left(\frac{1}{3}\right)$$. If the distance of the point $$(6,-6,4)$$ from the plane P is $$3 \sqrt{6}$$, then $$a^{4}+b^{2}$$ is equal to :

JEE Main 2023 (Online) 8th April Evening Shift
64

Let $$\mathrm{P}$$ be the plane passing through the line

$$\frac{x-1}{1}=\frac{y-2}{-3}=\frac{z+5}{7}$$ and the point $$(2,4,-3)$$.

If the image of the point $$(-1,3,4)$$ in the plane P

is $$(\alpha, \beta, \gamma)$$ then $$\alpha+\beta+\gamma$$ is equal to :

JEE Main 2023 (Online) 8th April Evening Shift
65

The shortest distance between the lines $$\frac{x-4}{4}=\frac{y+2}{5}=\frac{z+3}{3}$$ and $$\frac{x-1}{3}=\frac{y-3}{4}=\frac{z-4}{2}$$ is :

JEE Main 2023 (Online) 8th April Morning Shift
66

If the equation of the plane containing the line

$$x+2 y+3 z-4=0=2 x+y-z+5$$ and perpendicular to the plane

$\vec{r}=(\hat{i}-\hat{j})+\lambda(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}-2 \hat{j}+3 \hat{k})$

is $a x+b y+c z=4$, then $$(a-b+c)$$ is equal to :

JEE Main 2023 (Online) 8th April Morning Shift
67

A plane P contains the line of intersection of the plane $$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=6$$ and $$\vec{r} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5$$. If $$\mathrm{P}$$ passes through the point $$(0,2,-2)$$, then the square of distance of the point $$(12,12,18)$$ from the plane $$\mathrm{P}$$ is :

JEE Main 2023 (Online) 6th April Evening Shift
68

Let the line $$\mathrm{L}$$ pass through the point $$(0,1,2)$$, intersect the line $$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$$ and be parallel to the plane $$2 x+y-3 z=4$$. Then the distance of the point $$\mathrm{P}(1,-9,2)$$ from the line $$\mathrm{L}$$ is :

JEE Main 2023 (Online) 6th April Evening Shift
69

If the equation of the plane passing through the line of intersection of the planes $$2 x-y+z=3,4 x-3 y+5 z+9=0$$ and parallel to the line $$\frac{x+1}{-2}=\frac{y+3}{4}=\frac{z-2}{5}$$ is $$a x+b y+c z+6=0$$, then $$a+b+c$$ is equal to :

JEE Main 2023 (Online) 6th April Morning Shift
70

One vertex of a rectangular parallelopiped is at the origin $$\mathrm{O}$$ and the lengths of its edges along $$x, y$$ and $$z$$ axes are $$3,4$$ and $$5$$ units respectively. Let $$\mathrm{P}$$ be the vertex $$(3,4,5)$$. Then the shortest distance between the diagonal OP and an edge parallel to $$\mathrm{z}$$ axis, not passing through $$\mathrm{O}$$ or $$\mathrm{P}$$ is :

JEE Main 2023 (Online) 6th April Morning Shift
71

Let the plane P pass through the intersection of the planes $$2x+3y-z=2$$ and $$x+2y+3z=6$$, and be perpendicular to the plane $$2x+y-z+1=0$$. If d is the distance of P from the point ($$-$$7, 1, 1), then $$\mathrm{d^{2}}$$ is equal to :

JEE Main 2023 (Online) 1st February Evening Shift
72

The shortest distance between the lines

$${{x - 5} \over 1} = {{y - 2} \over 2} = {{z - 4} \over { - 3}}$$ and

$${{x + 3} \over 1} = {{y + 5} \over 4} = {{z - 1} \over { - 5}}$$ is :

JEE Main 2023 (Online) 1st February Morning Shift
73

Let the image of the point $$P(2,-1,3)$$ in the plane $$x+2 y-z=0$$ be $$Q$$.

Then the distance of the plane $$3 x+2 y+z+29=0$$ from the point $$Q$$ is :

JEE Main 2023 (Online) 1st February Morning Shift
74
Let the plane $\mathrm{P}: 8 x+\alpha_{1} y+\alpha_{2} z+12=0$ be parallel to

the line $\mathrm{L}: \frac{x+2}{2}=\frac{y-3}{3}=\frac{z+4}{5}$. If the intercept of $\mathrm{P}$

on the $y$-axis is 1 , then the distance between $\mathrm{P}$ and $\mathrm{L}$ is :
JEE Main 2023 (Online) 31st January Evening Shift
75
The foot of perpendicular from the origin $\mathrm{O}$ to a plane $\mathrm{P}$ which meets the co-ordinate axes at the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ is $(2, \mathrm{a}, 4), \mathrm{a} \in \mathrm{N}$. If the volume of the tetrahedron $\mathrm{OABC}$ is 144 unit$^{3}$, then which of the following points is NOT on P ?
JEE Main 2023 (Online) 31st January Evening Shift
76
Let $P$ be the plane, passing through the point $(1,-1,-5)$ and perpendicular to the line joining the points $(4,1,-3)$ and $(2,4,3)$. Then the distance of $P$ from the point $(3,-2,2)$ is :
JEE Main 2023 (Online) 31st January Evening Shift
77
If a point $\mathrm{P}(\alpha, \beta, \gamma)$ satisfying

$$\left( {\matrix{ \alpha & \beta & \gamma \cr } } \right)\left( {\matrix{ 2 & {10} & 8 \cr 9 & 3 & 8 \cr 8 & 4 & 8 \cr } } \right) = \left( {\matrix{ 0 & 0 & 0 \cr } } \right)$$

lies on the plane $2 x+4 y+3 z=5$, then $6 \alpha+9 \beta+7 \gamma$ is equal to :
JEE Main 2023 (Online) 31st January Evening Shift
78

Let the shortest distance between the lines

$$L: \frac{x-5}{-2}=\frac{y-\lambda}{0}=\frac{z+\lambda}{1}, \lambda \geq 0$$ and

$$L_{1}: x+1=y-1=4-z$$ be $$2 \sqrt{6}$$. If $$(\alpha, \beta, \gamma)$$ lies on $$L$$,

then which of the following is NOT possible?

JEE Main 2023 (Online) 31st January Morning Shift
79
A vector $\vec{v}$ in the first octant is inclined to the $x$-axis at $60^{\circ}$, to the $y$-axis at 45 and to the $z$-axis at an acute angle. If a plane passing through the points $(\sqrt{2},-1,1)$ and $(a, b, c)$, is normal to $\vec{v}$, then :
JEE Main 2023 (Online) 30th January Evening Shift
80
If a plane passes through the points $(-1, k, 0),(2, k,-1),(1,1,2)$ and is parallel to the line $\frac{x-1}{1}=\frac{2 y+1}{2}=\frac{z+1}{-1}$, then the value of $\frac{k^2+1}{(k-1)(k-2)}$ is :
JEE Main 2023 (Online) 30th January Evening Shift
81

The line $$l_1$$ passes through the point (2, 6, 2) and is perpendicular to the plane $$2x+y-2z=10$$. Then the shortest distance between the line $$l_1$$ and the line $$\frac{x+1}{2}=\frac{y+4}{-3}=\frac{z}{2}$$ is :

JEE Main 2023 (Online) 30th January Morning Shift
82

The plane $$2x-y+z=4$$ intersects the line segment joining the points A ($$a,-2,4)$$ and B ($$2,b,-3)$$ at the point C in the ratio 2 : 1 and the distance of the point C from the origin is $$\sqrt5$$. If $$ab < 0$$ and P is the point $$(a-b,b,2b-a)$$ then CP$$^2$$ is equal to :

JEE Main 2023 (Online) 29th January Evening Shift
83

If the lines $${{x - 1} \over 1} = {{y - 2} \over 2} = {{z + 3} \over 1}$$ and $${{x - a} \over 2} = {{y + 2} \over 3} = {{z - 3} \over 1}$$ intersect at the point P, then the distance of the point P from the plane $$z = a$$ is :

JEE Main 2023 (Online) 29th January Evening Shift
84

The shortest distance between the lines $${{x - 1} \over 2} = {{y + 8} \over -7} = {{z - 4} \over 5}$$ and $${{x - 1} \over 2} = {{y - 2} \over 1} = {{z - 6} \over { - 3}}$$ is :

JEE Main 2023 (Online) 29th January Evening Shift
85

The foot of perpendicular of the point (2, 0, 5) on the line $${{x + 1} \over 2} = {{y - 1} \over 5} = {{z + 1} \over { - 1}}$$ is ($$\alpha,\beta,\gamma$$). Then, which of the following is NOT correct?

JEE Main 2023 (Online) 25th January Evening Shift
86

The shortest distance between the lines $$x+1=2y=-12z$$ and $$x=y+2=6z-6$$ is :

JEE Main 2023 (Online) 25th January Evening Shift
87

The distance of the point P(4, 6, $$-$$2) from the line passing through the point ($$-$$3, 2, 3) and parallel to a line with direction ratios 3, 3, $$-$$1 is equal to :

JEE Main 2023 (Online) 25th January Morning Shift
88

Consider the lines $$L_1$$ and $$L_2$$ given by

$${L_1}:{{x - 1} \over 2} = {{y - 3} \over 1} = {{z - 2} \over 2}$$

$${L_2}:{{x - 2} \over 1} = {{y - 2} \over 2} = {{z - 3} \over 3}$$.

A line $$L_3$$ having direction ratios 1, $$-$$1, $$-$$2, intersects $$L_1$$ and $$L_2$$ at the points $$P$$ and $$Q$$ respectively. Then the length of line segment $$PQ$$ is

JEE Main 2023 (Online) 25th January Morning Shift
89

If the foot of the perpendicular drawn from (1, 9, 7) to the line passing through the point (3, 2, 1) and parallel to the planes $$x+2y+z=0$$ and $$3y-z=3$$ is ($$\alpha,\beta,\gamma$$), then $$\alpha+\beta+\gamma$$ is equal to :

JEE Main 2023 (Online) 24th January Evening Shift
90

Let the plane containing the line of intersection of the planes

P1 : $$x+(\lambda+4)y+z=1$$ and

P2 : $$2x+y+z=2$$

pass through the points (0, 1, 0) and (1, 0, 1). Then the distance of

the point (2$$\lambda,\lambda,-\lambda$$) from the plane P2 is :

JEE Main 2023 (Online) 24th January Evening Shift
91

The distance of the point (7, $$-$$3, $$-$$4) from the plane passing through the points (2, $$-$$3, 1), ($$-$$1, 1, $$-$$2) and (3, $$-$$4, 2) is :

JEE Main 2023 (Online) 24th January Morning Shift
92

The distance of the point ($$-1,9,-16$$) from the plane

$$2x+3y-z=5$$ measured parallel to the line

$${{x + 4} \over 3} = {{2 - y} \over 4} = {{z - 3} \over {12}}$$ is :

JEE Main 2023 (Online) 24th January Morning Shift
93

Let $$Q$$ be the foot of perpendicular drawn from the point $$P(1,2,3)$$ to the plane $$x+2 y+z=14$$. If $$R$$ is a point on the plane such that $$\angle P R Q=60^{\circ}$$, then the area of $$\triangle P Q R$$ is equal to :

JEE Main 2022 (Online) 29th July Evening Shift
94

If $$(2,3,9),(5,2,1),(1, \lambda, 8)$$ and $$(\lambda, 2,3)$$ are coplanar, then the product of all possible values of $$\lambda$$ is:

JEE Main 2022 (Online) 29th July Evening Shift
95

If the foot of the perpendicular from the point $$\mathrm{A}(-1,4,3)$$ on the plane $$\mathrm{P}: 2 x+\mathrm{m} y+\mathrm{n} z=4$$, is $$\left(-2, \frac{7}{2}, \frac{3}{2}\right)$$, then the distance of the point A from the plane P, measured parallel to a line with direction ratios $$3,-1,-4$$, is equal to :

JEE Main 2022 (Online) 29th July Morning Shift
96

Let the lines

$$\frac{x-1}{\lambda}=\frac{y-2}{1}=\frac{z-3}{2}$$ and

$$\frac{x+26}{-2}=\frac{y+18}{3}=\frac{z+28}{\lambda}$$ be coplanar

and $$\mathrm{P}$$ be the plane containing these two lines.

Then which of the following points does NOT lie on P?

JEE Main 2022 (Online) 28th July Evening Shift
97

A plane P is parallel to two lines whose direction ratios are $$-2,1,-3$$ and $$-1,2,-2$$ and it contains the point $$(2,2,-2)$$. Let P intersect the co-ordinate axes at the points $$\mathrm{A}, \mathrm{B}, \mathrm{C}$$ making the intercepts $$\alpha, \beta, \gamma$$. If $$\mathrm{V}$$ is the volume of the tetrahedron $$\mathrm{OABC}$$, where $$\mathrm{O}$$ is the origin, and $$\mathrm{p}=\alpha+\beta+\gamma$$, then the ordered pair $$(\mathrm{V}, \mathrm{p})$$ is equal to :

JEE Main 2022 (Online) 28th July Evening Shift
98

The foot of the perpendicular from a point on the circle $$x^{2}+y^{2}=1, z=0$$ to the plane $$2 x+3 y+z=6$$ lies on which one of the following curves?

JEE Main 2022 (Online) 28th July Morning Shift
99

If the length of the perpendicular drawn from the point $$P(a, 4,2)$$, a $$>0$$ on the line $$\frac{x+1}{2}=\frac{y-3}{3}=\frac{z-1}{-1}$$ is $$2 \sqrt{6}$$ units and $$Q\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$$ is the image of the point P in this line, then $$\mathrm{a}+\sum\limits_{i=1}^{3} \alpha_{i}$$ is equal to :

JEE Main 2022 (Online) 27th July Evening Shift
100

If the line of intersection of the planes $$a x+b y=3$$ and $$a x+b y+c z=0$$, a $$>0$$ makes an angle $$30^{\circ}$$ with the plane $$y-z+2=0$$, then the direction cosines of the line are :

JEE Main 2022 (Online) 27th July Evening Shift
101

If the plane $$P$$ passes through the intersection of two mutually perpendicular planes $$2 x+k y-5 z=1$$ and $$3 k x-k y+z=5, k<3$$ and intercepts a unit length on positive $$x$$-axis, then the intercept made by the plane $$P$$ on the $$y$$-axis is :

JEE Main 2022 (Online) 27th July Morning Shift
102

A vector $$\vec{a}$$ is parallel to the line of intersection of the plane determined by the vectors $$\hat{i}, \hat{i}+\hat{j}$$ and the plane determined by the vectors $$\hat{i}-\hat{j}, \hat{i}+\hat{k}$$. The obtuse angle between $$\vec{a}$$ and the vector $$\vec{b}=\hat{i}-2 \hat{j}+2 \hat{k}$$ is :

JEE Main 2022 (Online) 26th July Evening Shift
103

The length of the perpendicular from the point $$(1,-2,5)$$ on the line passing through $$(1,2,4)$$ and parallel to the line $$x+y-z=0=x-2 y+3 z-5$$ is :

JEE Main 2022 (Online) 26th July Morning Shift
104

A plane $$E$$ is perpendicular to the two planes $$2 x-2 y+z=0$$ and $$x-y+2 z=4$$, and passes through the point $$P(1,-1,1)$$. If the distance of the plane $$E$$ from the point $$Q(a, a, 2)$$ is $$3 \sqrt{2}$$, then $$(P Q)^{2}$$ is equal to :

JEE Main 2022 (Online) 25th July Evening Shift
105

The shortest distance between the lines $$\frac{x+7}{-6}=\frac{y-6}{7}=z$$ and $$\frac{7-x}{2}=y-2=z-6$$ is :

JEE Main 2022 (Online) 25th July Evening Shift
106

Let $$\mathrm{P}$$ be the plane containing the straight line $$\frac{x-3}{9}=\frac{y+4}{-1}=\frac{z-7}{-5}$$ and perpendicular to the plane containing the straight lines $$\frac{x}{2}=\frac{y}{3}=\frac{z}{5}$$ and $$\frac{x}{3}=\frac{y}{7}=\frac{z}{8}$$. If $$\mathrm{d}$$ is the distance of $$\mathrm{P}$$ from the point $$(2,-5,11)$$, then $$\mathrm{d}^{2}$$ is equal to :

JEE Main 2022 (Online) 25th July Morning Shift
107

The distance of the point (3, 2, $$-$$1) from the plane $$3x - y + 4z + 1 = 0$$ along the line $${{2 - x} \over 2} = {{y - 3} \over 2} = {{z + 1} \over 1}$$ is equal to :

JEE Main 2022 (Online) 30th June Morning Shift
108

Let $${{x - 2} \over 3} = {{y + 1} \over { - 2}} = {{z + 3} \over { - 1}}$$ lie on the plane $$px - qy + z = 5$$, for some p, q $$\in$$ R. The shortest distance of the plane from the origin is :

JEE Main 2022 (Online) 29th June Evening Shift
109

Let Q be the mirror image of the point P(1, 2, 1) with respect to the plane x + 2y + 2z = 16. Let T be a plane passing through the point Q and contains the line $$\overrightarrow r = - \widehat k + \lambda \left( {\widehat i + \widehat j + 2\widehat k} \right),\,\lambda \in R$$. Then, which of the following points lies on T?

JEE Main 2022 (Online) 29th June Evening Shift
110

If the mirror image of the point (2, 4, 7) in the plane 3x $$-$$ y + 4z = 2 is (a, b, c), then 2a + b + 2c is equal to :

JEE Main 2022 (Online) 29th June Morning Shift
111

Let the plane ax + by + cz = d pass through (2, 3, $$-$$5) and is perpendicular to the planes
2x + y $$-$$ 5z = 10 and 3x + 5y $$-$$ 7z = 12. If a, b, c, d are integers d > 0 and gcd (|a|, |b|, |c|, d) = 1, then the value of a + 7b + c + 20d is equal to :

JEE Main 2022 (Online) 28th June Evening Shift
112

If two distinct point Q, R lie on the line of intersection of the planes $$ - x + 2y - z = 0$$ and $$3x - 5y + 2z = 0$$ and $$PQ = PR = \sqrt {18} $$ where the point P is (1, $$-$$2, 3), then the area of the triangle PQR is equal to :

JEE Main 2022 (Online) 28th June Morning Shift
113

The acute angle between the planes P1 and P2, when P1 and P2 are the planes passing through the intersection of the planes $$5x + 8y + 13z - 29 = 0$$ and $$8x - 7y + z - 20 = 0$$ and the points (2, 1, 3) and (0, 1, 2), respectively, is :

JEE Main 2022 (Online) 28th June Morning Shift
114

Let the plane $$P:\overrightarrow r \,.\,\overrightarrow a = d$$ contain the line of intersection of two planes $$\overrightarrow r \,.\,\left( {\widehat i + 3\widehat j - \widehat k} \right) = 6$$ and $$\overrightarrow r \,.\,\left( { - 6\widehat i + 5\widehat j - \widehat k} \right) = 7$$. If the plane P passes through the point $$\left( {2,3,{1 \over 2}} \right)$$, then the value of $${{|13\overrightarrow a {|^2}} \over {{d^2}}}$$ is equal to :

JEE Main 2022 (Online) 28th June Morning Shift
115

Let the foot of the perpendicular from the point (1, 2, 4) on the line $${{x + 2} \over 4} = {{y - 1} \over 2} = {{z + 1} \over 3}$$ be P. Then the distance of P from the plane $$3x + 4y + 12z + 23 = 0$$ is :

JEE Main 2022 (Online) 27th June Evening Shift
116

The shortest distance between the lines

$${{x - 3} \over 2} = {{y - 2} \over 3} = {{z - 1} \over { - 1}}$$ and $${{x + 3} \over 2} = {{y - 6} \over 1} = {{z - 5} \over 3}$$, is :

JEE Main 2022 (Online) 27th June Evening Shift
117

If two straight lines whose direction cosines are given by the relations $$l + m - n = 0$$, $$3{l^2} + {m^2} + cnl = 0$$ are parallel, then the positive value of c is :

JEE Main 2022 (Online) 27th June Morning Shift
118

If the plane $$2x + y - 5z = 0$$ is rotated about its line of intersection with the plane $$3x - y + 4z - 7 = 0$$ by an angle of $${\pi \over 2}$$, then the plane after the rotation passes through the point :

JEE Main 2022 (Online) 26th June Evening Shift
119

If the lines $$\overrightarrow r = \left( {\widehat i - \widehat j + \widehat k} \right) + \lambda \left( {3\widehat j - \widehat k} \right)$$ and $$\overrightarrow r = \left( {\alpha \widehat i - \widehat j} \right) + \mu \left( {2\widehat i - 3\widehat k} \right)$$ are co-planar, then the distance of the plane containing these two lines from the point ($$\alpha$$, 0, 0) is :

JEE Main 2022 (Online) 26th June Evening Shift
120

Let $$\overrightarrow a = \widehat i + \widehat j + 2\widehat k$$, $$\overrightarrow b = 2\widehat i - 3\widehat j + \widehat k$$ and $$\overrightarrow c = \widehat i - \widehat j + \widehat k$$ be three given vectors. Let $$\overrightarrow v $$ be a vector in the plane of $$\overrightarrow a $$ and $$\overrightarrow b $$ whose projection on $$\overrightarrow c $$ is $${2 \over {\sqrt 3 }}$$. If $$\overrightarrow v \,.\,\widehat j = 7$$, then $$\overrightarrow v \,.\,\left( {\widehat i + \widehat k} \right)$$ is equal to :

JEE Main 2022 (Online) 26th June Evening Shift
121

If the two lines $${l_1}:{{x - 2} \over 3} = {{y + 1} \over {-2}},\,z = 2$$ and $${l_2}:{{x - 1} \over 1} = {{2y + 3} \over \alpha } = {{z + 5} \over 2}$$ are perpendicular, then an angle between the lines l2 and $${l_3}:{{1 - x} \over 3} = {{2y - 1} \over { - 4}} = {z \over 4}$$ is :

JEE Main 2022 (Online) 26th June Morning Shift
122

Let the plane 2x + 3y + z + 20 = 0 be rotated through a right angle about its line of intersection with the plane x $$-$$ 3y + 5z = 8. If the mirror image of the point $$\left( {2, - {1 \over 2},2} \right)$$ in the rotated plane is B(a, b, c), then :

JEE Main 2022 (Online) 26th June Morning Shift
123

Let p be the plane passing through the intersection of the planes $$\overrightarrow r \,.\,\left( {\widehat i + 3\widehat j - \widehat k} \right) = 5$$ and $$\overrightarrow r \,.\,\left( {2\widehat i - \widehat j + \widehat k} \right) = 3$$, and the point (2, 1, $$-$$2). Let the position vectors of the points X and Y be $$\widehat i - 2\widehat j + 4\widehat k$$ and $$5\widehat i - \widehat j + 2\widehat k$$ respectively. Then the points :

JEE Main 2022 (Online) 25th June Evening Shift
124

Let Q be the mirror image of the point P(1, 0, 1) with respect to the plane S : x + y + z = 5. If a line L passing through (1, $$-$$1, $$-$$1), parallel to the line PQ meets the plane S at R, then QR2 is equal to :

JEE Main 2022 (Online) 25th June Morning Shift
125

If the shortest distance between the lines $${{x - 1} \over 2} = {{y - 2} \over 3} = {{z - 3} \over \lambda }$$ and $${{x - 2} \over 1} = {{y - 4} \over 4} = {{z - 5} \over 5}$$ is $${1 \over {\sqrt 3 }}$$, then the sum of all possible value of $$\lambda$$ is :

JEE Main 2022 (Online) 24th June Evening Shift
126

Let the points on the plane P be equidistant from the points ($$-$$4, 2, 1) and (2, $$-$$2, 3). Then the acute angle between the plane P and the plane 2x + y + 3z = 1 is :

JEE Main 2022 (Online) 24th June Evening Shift
127
Let the acute angle bisector of the two planes x $$-$$ 2y $$-$$ 2z + 1 = 0 and 2x $$-$$ 3y $$-$$ 6z + 1 = 0 be the plane P. Then which of the following points lies on P?
JEE Main 2021 (Online) 1st September Evening Shift
128
The distance of line $$3y - 2z - 1 = 0 = 3x - z + 4$$ from the point (2, $$-$$1, 6) is :
JEE Main 2021 (Online) 1st September Evening Shift
129
The distance of the point ($$-$$1, 2, $$-$$2) from the line of intersection of the planes 2x + 3y + 2z = 0 and x $$-$$ 2y + z = 0 is :
JEE Main 2021 (Online) 31st August Evening Shift
130
Let the equation of the plane, that passes through the point (1, 4, $$-$$3) and contains the line of intersection of the
planes 3x $$-$$ 2y + 4z $$-$$ 7 = 0
and x + 5y $$-$$ 2z + 9 = 0, be
$$\alpha$$x + $$\beta$$y + $$\gamma$$z + 3 = 0, then $$\alpha$$ + $$\beta$$ + $$\gamma$$ is equal to :
JEE Main 2021 (Online) 31st August Morning Shift
131
The angle between the straight lines, whose direction cosines are given by the equations 2l + 2m $$-$$ n = 0 and mn + nl + lm = 0, is :
JEE Main 2021 (Online) 27th August Evening Shift
132
The equation of the plane passing through the line of intersection of the planes $$\overrightarrow r .\left( {\widehat i + \widehat j + \widehat k} \right) = 1$$ and $$\overrightarrow r .\left( {2\widehat i + 3\widehat j - \widehat k} \right) + 4 = 0$$ and parallel to the x-axis is :
JEE Main 2021 (Online) 27th August Evening Shift
133
The distance of the point (1, $$-$$2, 3) from the plane x $$-$$ y + z = 5 measured parallel to a line, whose direction ratios are 2, 3, $$-$$6 is :
JEE Main 2021 (Online) 27th August Morning Shift
134
Equation of a plane at a distance $$\sqrt {{2 \over {21}}} $$ from the origin, which contains the line of intersection of the planes x $$-$$ y $$-$$ z $$-$$ 1 = 0 and 2x + y $$-$$ 3z + 4 = 0, is :
JEE Main 2021 (Online) 27th August Morning Shift
135
Let P be the plane passing through the point (1, 2, 3) and the line of intersection of the planes $$\overrightarrow r \,.\,\left( {\widehat i + \widehat j + 4\widehat k} \right) = 16$$ and $$\overrightarrow r \,.\,\left( { - \widehat i + \widehat j + \widehat k} \right) = 6$$. Then which of the following points does NOT lie on P?
JEE Main 2021 (Online) 26th August Evening Shift
136
A plane P contains the line $$x + 2y + 3z + 1 = 0 = x - y - z - 6$$, and is perpendicular to the plane $$ - 2x + y + z + 8 = 0$$. Then which of the following points lies on P?
JEE Main 2021 (Online) 26th August Morning Shift
137
For real numbers $$\alpha$$ and $$\beta$$ $$\ne$$ 0, if the point of intersection of the straight lines

$${{x - \alpha } \over 1} = {{y - 1} \over 2} = {{z - 1} \over 3}$$ and $${{x - 4} \over \beta } = {{y - 6} \over 3} = {{z - 7} \over 3}$$, lies on the plane x + 2y $$-$$ z = 8, then $$\alpha$$ $$-$$ $$\beta$$ is equal to :
JEE Main 2021 (Online) 27th July Evening Shift
138
Let the plane passing through the point ($$-$$1, 0, $$-$$2) and perpendicular to each of the planes 2x + y $$-$$ z = 2 and x $$-$$ y $$-$$ z = 3 be ax + by + cz + 8 = 0. Then the value of a + b + c is equal to :
JEE Main 2021 (Online) 27th July Morning Shift
139
Let the foot of perpendicular from a point P(1, 2, $$-$$1) to the straight line $$L:{x \over 1} = {y \over 0} = {z \over { - 1}}$$ be N. Let a line be drawn from P parallel to the plane x + y + 2z = 0 which meets L at point Q. If $$\alpha$$ is the acute angle between the lines PN and PQ, then cos$$\alpha$$ is equal to ________________.
JEE Main 2021 (Online) 25th July Morning Shift
140
Let L be the line of intersection of planes $$\overrightarrow r .(\widehat i - \widehat j + 2\widehat k) = 2$$ and $$\overrightarrow r .(2\widehat i + \widehat j - \widehat k) = 2$$. If $$P(\alpha ,\beta ,\gamma )$$ is the foot of perpendicular on L from the point (1, 2, 0), then the value of $$35(\alpha + \beta + \gamma )$$ is equal to :
JEE Main 2021 (Online) 22th July Evening Shift
141
If the shortest distance between the straight lines $$3(x - 1) = 6(y - 2) = 2(z - 1)$$ and $$4(x - 2) = 2(y - \lambda ) = (z - 3),\lambda \in R$$ is $${1 \over {\sqrt {38} }}$$, then the integral value of $$\lambda$$ is equal to :
JEE Main 2021 (Online) 22th July Evening Shift
142
The lines x = ay $$-$$ 1 = z $$-$$ 2 and x = 3y $$-$$ 2 = bz $$-$$ 2, (ab $$\ne$$ 0) are coplanar, if :
JEE Main 2021 (Online) 20th July Evening Shift
143
Consider the line L given by the equation

$${{x - 3} \over 2} = {{y - 1} \over 1} = {{z - 2} \over 1}$$.

Let Q be the mirror image of the point (2, 3, $$-$$1) with respect to L. Let a plane P be such that it passes through Q, and the line L is perpendicular to P. Then which of the following points is on the plane P?
JEE Main 2021 (Online) 20th July Evening Shift
144
If the equation of plane passing through the mirror image of a point (2, 3, 1) with respect to line $${{x + 1} \over 2} = {{y - 3} \over 1} = {{z + 2} \over { - 1}}$$ and containing the line $${{x - 2} \over 3} = {{1 - y} \over 2} = {{z + 1} \over 1}$$ is $$\alpha$$x + $$\beta$$y + $$\gamma$$z = 24, then $$\alpha$$ + $$\beta$$ + $$\gamma$$ is equal to :
JEE Main 2021 (Online) 17th March Evening Shift
145
The equation of the plane which contains the y-axis and passes through the point (1, 2, 3) is :
JEE Main 2021 (Online) 17th March Morning Shift
146
If the foot of the perpendicular from point (4, 3, 8) on the line $${L_1}:{{x - a} \over l} = {{y - 2} \over 3} = {{z - b} \over 4}$$, l $$\ne$$ 0 is (3, 5, 7), then the shortest distance between the line L1 and line $${L_2}:{{x - 2} \over 3} = {{y - 4} \over 4} = {{z - 5} \over 5}$$ is equal to :
JEE Main 2021 (Online) 16th March Evening Shift
147
If (x, y, z) be an arbitrary point lying on a plane P which passes through the points (42, 0, 0), (0, 42, 0) and (0, 0, 42), then the value of the expression
$$3 + {{x - 11} \over {{{(y - 19)}^2}{{(z - 12)}^2}}} + {{y - 19} \over {{{(x - 11)}^2}{{(z - 12)}^2}}} + {{z - 12} \over {{{(x - 11)}^2}{{(y - 19)}^2}}} - {{x + y + z} \over {14(x - 11)(y - 19)(z - 12)}}$$ is equal to :
JEE Main 2021 (Online) 16th March Evening Shift
148
Let the position vectors of two points P and Q be 3$$\widehat i$$ $$-$$ $$\widehat j$$ + 2$$\widehat k$$ and $$\widehat i$$ + 2$$\widehat j$$ $$-$$ 4$$\widehat k$$, respectively. Let R and S be two points such that the direction ratios of lines PR and QS are (4, $$-$$1, 2) and ($$-$$2, 1, $$-$$2), respectively. Let lines PR and QS intersect at T. If the vector $$\overrightarrow {TA} $$ is perpendicular to both $$\overrightarrow {PR} $$ and $$\overrightarrow {QS} $$ and the length of vector $$\overrightarrow {TA} $$ is $$\sqrt 5 $$ units, then the modulus of a position vector of A is :
JEE Main 2021 (Online) 16th March Morning Shift
149
Let P be a plane lx + my + nz = 0 containing

the line, $${{1 - x} \over 1} = {{y + 4} \over 2} = {{z + 2} \over 3}$$. If plane P divides the line segment AB joining

points A($$-$$3, $$-$$6, 1) and B(2, 4, $$-$$3) in ratio k : 1 then the value of k is equal to :
JEE Main 2021 (Online) 16th March Morning Shift
150
If for a > 0, the feet of perpendiculars from the points A(a, $$-$$2a, 3) and B(0, 4, 5) on the plane lx + my + nz = 0 are points C(0, $$-$$a, $$-$$1) and D respectively, then the length of line segment CD is equal to :
JEE Main 2021 (Online) 16th March Morning Shift
151
If the mirror image of the point (1, 3, 5) with respect to the plane

4x $$-$$ 5y + 2z = 8 is ($$\alpha$$, $$\beta$$, $$\gamma$$), then 5($$\alpha$$ + $$\beta$$ + $$\gamma$$) equals :
JEE Main 2021 (Online) 26th February Evening Shift
152
Let L be a line obtained from the intersection of two planes x + 2y + z = 6 and y + 2z = 4. If point P($$\alpha$$, $$\beta$$, $$\gamma$$) is the foot of perpendicular from (3, 2, 1) on L, then the
value of 21($$\alpha$$ + $$\beta$$ + $$\gamma$$) equals :
JEE Main 2021 (Online) 26th February Evening Shift
153
Consider the three planes

P1 : 3x + 15y + 21z = 9,

P2 : x $$-$$ 3y $$-$$ z = 5, and

P3 : 2x + 10y + 14z = 5

Then, which one of the following is true?
JEE Main 2021 (Online) 26th February Morning Shift
154
If (1, 5, 35), (7, 5, 5), (1, $$\lambda$$, 7) and (2$$\lambda$$, 1, 2) are coplanar, then the sum of all possible values of $$\lambda$$ is :
JEE Main 2021 (Online) 26th February Morning Shift
155
A plane passes through the points A(1, 2, 3), B(2, 3, 1) and C(2, 4, 2). If O is the origin and P is (2, $$-$$1, 1), then the projection of $$\overrightarrow {OP} $$ on this plane is of length :
JEE Main 2021 (Online) 25th February Evening Shift
156
The equation of the line through the point (0, 1, 2) and perpendicular to the line

$${{x - 1} \over 2} = {{y + 1} \over 3} = {{z - 1} \over { - 2}}$$ is :
JEE Main 2021 (Online) 25th February Morning Shift
157
Let $$\alpha$$ be the angle between the lines whose direction cosines satisfy the equations l + m $$-$$ n = 0 and l2 + m2 $$-$$ n2 = 0. Then the value of sin4$$\alpha$$ + cos4$$\alpha$$ is :
JEE Main 2021 (Online) 25th February Morning Shift
158
Let a, b$$ \in $$R. If the mirror image of the point P(a, 6, 9) with respect to the line

$${{x - 3} \over 7} = {{y - 2} \over 5} = {{z - 1} \over { - 9}}$$ is (20, b, $$-$$a$$-$$9), then | a + b |, is equal to :
JEE Main 2021 (Online) 24th February Evening Shift
159
The vector equation of the plane passing through the intersection

of the planes $$\overrightarrow r .\left( {\widehat i + \widehat j + \widehat k} \right) = 1$$ and $$\overrightarrow r .\left( {\widehat i - 2\widehat j} \right) = - 2$$, and the point (1, 0, 2) is :
JEE Main 2021 (Online) 24th February Evening Shift
160
The equation of the plane passing through the point (1, 2, -3) and perpendicular to the planes

3x + y - 2z = 5 and 2x - 5y - z = 7, is :
JEE Main 2021 (Online) 24th February Morning Shift
161
The distance of the point (1, 1, 9) from the point of intersection of the line $${{x - 3} \over 1} = {{y - 4} \over 2} = {{z - 5} \over 2}$$ and the plane x + y + z = 17 is :
JEE Main 2021 (Online) 24th February Morning Shift
162
A plane P meets the coordinate axes at A, B and C respectively. The centroid of $$\Delta $$ABC is given to be (1, 1, 2). Then the equation of the line through this centroid and perpendicular to the plane P is :
JEE Main 2020 (Online) 6th September Evening Slot
163
The shortest distance between the lines

$${{x - 1} \over 0} = {{y + 1} \over { - 1}} = {z \over 1}$$

and x + y + z + 1 = 0, 2x – y + z + 3 = 0 is :
JEE Main 2020 (Online) 6th September Morning Slot
164
If for some $$\alpha $$ $$ \in $$ R, the lines

L1 : $${{x + 1} \over 2} = {{y - 2} \over { - 1}} = {{z - 1} \over 1}$$ and

L2 : $${{x + 2} \over \alpha } = {{y + 1} \over {5 - \alpha }} = {{z + 1} \over 1}$$ are coplanar,

then the line L2 passes through the point :
JEE Main 2020 (Online) 5th September Evening Slot
165
If (a, b, c) is the image of the point (1, 2, -3) in

the line $${{x + 1} \over 2} = {{y - 3} \over { - 2}} = {z \over { - 1}}$$, then a + b + c is :
JEE Main 2020 (Online) 5th September Morning Slot
166
The distance of the point (1, –2, 3) from

the plane x – y + z = 5 measured parallel to

the line $${x \over 2} = {y \over 3} = {z \over { - 6}}$$ is :
JEE Main 2020 (Online) 4th September Evening Slot
167
The plane which bisects the line joining, the points (4, –2, 3) and (2, 4, –1) at right angles also passes through the point :
JEE Main 2020 (Online) 3rd September Evening Slot
168
The foot of the perpendicular drawn from the point (4, 2, 3) to the line joining the points (1, –2, 3) and (1, 1, 0) lies on the plane :
JEE Main 2020 (Online) 3rd September Morning Slot
169
A plane passing through the point (3, 1, 1) contains two lines whose direction ratios are 1, –2, 2 and 2, 3, –1 respectively. If this plane also passes through the point ($$\alpha $$, –3, 5), then $$\alpha $$ is equal to:
JEE Main 2020 (Online) 2nd September Evening Slot
170
The plane passing through the points (1, 2, 1),
(2, 1, 2) and parallel to the line, 2x = 3y, z = 1
also passes through the point :
JEE Main 2020 (Online) 2nd September Morning Slot
171
The mirror image of the point (1, 2, 3) in a plane is

$$\left( { - {7 \over 3}, - {4 \over 3}, - {1 \over 3}} \right)$$. Which of the following points lies on this plane ?
JEE Main 2020 (Online) 8th January Evening Slot
172
The shortest distance between the lines

$${{x - 3} \over 3} = {{y - 8} \over { - 1}} = {{z - 3} \over 1}$$ and

$${{x + 3} \over { - 3}} = {{y + 7} \over 2} = {{z - 6} \over 4}$$ is :
JEE Main 2020 (Online) 8th January Morning Slot
173
Let P be a plane passing through the points (2, 1, 0), (4, 1, 1) and (5, 0, 1) and R be any point (2, 1, 6). Then the image of R in the plane P is :
JEE Main 2020 (Online) 7th January Morning Slot
174
A plane which bisects the angle between the two given planes 2x – y + 2z – 4 = 0 and x + 2y + 2z – 2 = 0, passes through the point :
JEE Main 2019 (Online) 12th April Evening Slot
175
The length of the perpendicular drawn from the point (2, 1, 4) to the plane containing the lines
$$\overrightarrow r = \left( {\widehat i + \widehat j} \right) + \lambda \left( {\widehat i + 2\widehat j - \widehat k} \right)$$ and $$\overrightarrow r = \left( {\widehat i + \widehat j} \right) + \mu \left( { - \widehat i + \widehat j - 2\widehat k} \right)$$ is :
JEE Main 2019 (Online) 12th April Evening Slot
176
If the line $${{x - 2} \over 3} = {{y + 1} \over 2} = {{z - 1} \over { - 1}}$$ intersects the plane 2x + 3y – z + 13 = 0 at a point P and the plane 3x + y + 4z = 16 at a point Q, then PQ is equal to :
JEE Main 2019 (Online) 12th April Morning Slot
177
If the plane 2x – y + 2z + 3 = 0 has the distances $${1 \over 3}$$ and $${2 \over 3}$$ units from the planes 4x – 2y + 4z + $$\lambda $$ = 0 and 2x – y + 2z + $$\mu $$ = 0, respectively, then the maximum value of $$\lambda $$ + $$\mu $$ is equal to :
JEE Main 2019 (Online) 10th April Evening Slot
178
A perpendicular is drawn from a point on the line $${{x - 1} \over 2} = {{y + 1} \over { - 1}} = {z \over 1}$$ to the plane x + y + z = 3 such that the foot of the perpendicular Q also lies on the plane x – y + z = 3. Then the co-ordinates of Q are :
JEE Main 2019 (Online) 10th April Evening Slot
179
If the length of the perpendicular from the point ($$\beta $$, 0, $$\beta $$) ($$\beta $$ $$ \ne $$ 0) to the line,
$${x \over 1} = {{y - 1} \over 0} = {{z + 1} \over { - 1}}$$ is $$\sqrt {{3 \over 2}} $$, then $$\beta $$ is equal to :
JEE Main 2019 (Online) 10th April Morning Slot
180
If Q(0, –1, –3) is the image of the point P in the plane 3x – y + 4z = 2 and R is the point (3, –1, –2), then the area (in sq. units) of $$\Delta $$PQR is :
JEE Main 2019 (Online) 10th April Morning Slot
181
The vertices B and C of a $$\Delta $$ABC lie on the line,

$${{x + 2} \over 3} = {{y - 1} \over 0} = {z \over 4}$$ such that BC = 5 units.

Then the area (in sq. units) of this triangle, given that the point A(1, –1, 2), is :
JEE Main 2019 (Online) 9th April Evening Slot
182
Let P be the plane, which contains the line of intersection of the planes, x + y + z – 6 = 0 and 2x + 3y + z + 5 = 0 and it is perpendicular to the xy-plane. Then the distance of the point (0, 0, 256) from P is equal to :
JEE Main 2019 (Online) 9th April Evening Slot
183
A plane passing through the points (0, –1, 0) and (0, 0, 1) and making an angle $${\pi \over 4}$$ with the plane y – z + 5 = 0, also passes through the point
JEE Main 2019 (Online) 9th April Morning Slot
184
If the line, $${{x - 1} \over 2} = {{y + 1} \over 3} = {{z - 2} \over 4}$$ meets the plane, x + 2y + 3z = 15 at a point P, then the distance of P from the origin is :
JEE Main 2019 (Online) 9th April Morning Slot
185
The vector equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y+ 4z = 5 which is perpendicular to the plane x – y + z = 0 is :
JEE Main 2019 (Online) 8th April Evening Slot
186
If a point R(4, y, z) lies on the line segment joining the points P(2, –3, 4) and Q(8, 0, 10), then the distance of R from the origin is :
JEE Main 2019 (Online) 8th April Evening Slot
187
The length of the perpendicular from the point (2, –1, 4) on the straight line,

$${{x + 3} \over {10}}$$= $${{y - 2} \over {-7}}$$ = $${{z} \over {1}}$$ is :
JEE Main 2019 (Online) 8th April Morning Slot
188
The magnitude of the projection of the vector $$\mathop {2i}\limits^ \wedge + \mathop {3j}\limits^ \wedge + \mathop k\limits^ \wedge $$ on the vector perpendicular to the plane containing the vectors $$\mathop {i}\limits^ \wedge + \mathop {j}\limits^ \wedge + \mathop k\limits^ \wedge $$ and $$\mathop {i}\limits^ \wedge + \mathop {2j}\limits^ \wedge + \mathop {3k}\limits^ \wedge $$ , is :
JEE Main 2019 (Online) 8th April Morning Slot
189
The equation of a plane containing the line of intersection of the planes 2x – y – 4 = 0 and y + 2z – 4 = 0 and passing through the point (1, 1, 0) is :
JEE Main 2019 (Online) 8th April Morning Slot
190
Let S be the set of all real values of $$\lambda $$ such that a plane passing through the points (–$$\lambda $$2, 1, 1), (1, –$$\lambda $$2, 1) and (1, 1, – $$\lambda $$2) also passes through the point (–1, –1, 1). Then S is equal to :
JEE Main 2019 (Online) 12th January Evening Slot
191
If an angle between the line, $${{x + 1} \over 2} = {{y - 2} \over 1} = {{z - 3} \over { - 2}}$$ and the plane, $$x - 2y - kz = 3$$ is $${\cos ^{ - 1}}\left( {{{2\sqrt 2 } \over 3}} \right),$$ then a value of k is :
JEE Main 2019 (Online) 12th January Evening Slot
192
The perpendicular distance from the origin to the plane containing the two lines,

$${{x + 2} \over 3} = {{y - 2} \over 5} = {{z + 5} \over 7}$$ and

$${{x - 1} \over 1} = {{y - 4} \over 4} = {{z + 4} \over 7},$$ is :
JEE Main 2019 (Online) 12th January Morning Slot
193
A tetrahedron has vertices P(1, 2, 1), Q(2, 1, 3), R(–1, 1, 2) and O(0, 0, 0). The angle between the faces OPQ and PQR is :
JEE Main 2019 (Online) 12th January Morning Slot
194
Two lines $${{x - 3} \over 1} = {{y + 1} \over 3} = {{z - 6} \over { - 1}}$$ and $${{x + 5} \over 7} = {{y - 2} \over { - 6}} = {{z - 3} \over 4}$$ intersect at the point R. The reflection of R in the xy-plane has coordinates :
JEE Main 2019 (Online) 11th January Evening Slot
195
If the point (2, $$\alpha $$, $$\beta $$) lies on the plane which passes through the points (3, 4, 2) and (7, 0, 6) and is perpendicular to the plane 2x – 5y = 15, then 2$$\alpha $$ – 3$$\beta $$ is equal to
JEE Main 2019 (Online) 11th January Evening Slot
196
The plane containing the line $${{x - 3} \over 2} = {{y + 2} \over { - 1}} = {{z - 1} \over 3}$$ and also containing its projection on the plane 2x + 3y $$-$$ z = 5, contains which one of the following points ?
JEE Main 2019 (Online) 11th January Morning Slot
197
The direction ratios of normal to the plane through the points (0, –1, 0) and (0, 0, 1) and making an angle $${\pi \over 4}$$ with the plane y $$-$$ z + 5 = 0 are :
JEE Main 2019 (Online) 11th January Morning Slot
198
On which of the following lines lies the point of intersection of the line,   $${{x - 4} \over 2} = {{y - 5} \over 2} = {{z - 3} \over 1}$$  and the plane, x + y + z = 2 ?
JEE Main 2019 (Online) 10th January Evening Slot
199
The plane which bisects the line segment joining the points (–3, –3, 4) and (3, 7, 6) at right angles, passes through which one of the following points ?
JEE Main 2019 (Online) 10th January Evening Slot
200
The plane passing through the point (4, –1, 2) and parallel to the lines  $${{x + 2} \over 3} = {{y - 2} \over { - 1}} = {{z + 1} \over 2}$$  and  $${{x - 2} \over 1} = {{y - 3} \over 2} = {{z - 4} \over 3}$$ also passes through the point -
JEE Main 2019 (Online) 10th January Morning Slot
201
Let A be a point on the line $$\overrightarrow r = \left( {1 - 3\mu } \right)\widehat i + \left( {\mu - 1} \right)\widehat j + \left( {2 + 5\mu } \right)\widehat k$$ and B(3, 2, 6) be a point in the space. Then the value of $$\mu $$ for which the vector $$\overrightarrow {AB} $$  is parallel to the plane x $$-$$ 4y + 3z = 1 is -
JEE Main 2019 (Online) 10th January Morning Slot
202
The equation of the plane containing the straight line $${x \over 2} = {y \over 3} = {z \over 4}$$ and perpendicular to the plane containing the straight lines $${x \over 3} = {y \over 4} = {z \over 2}$$ and $${x \over 4} = {y \over 2} = {z \over 3}$$ is :
JEE Main 2019 (Online) 9th January Evening Slot
203
If the lines x = ay + b, z = cy + d and x = a'z + b', y = c'z + d' are perpendicular, then :
JEE Main 2019 (Online) 9th January Evening Slot
204
The equation of the line passing through (–4, 3, 1), parallel

to the plane x + 2y – z – 5 = 0 and intersecting

the line $${{x + 1} \over { - 3}} = {{y - 3} \over 2} = {{z - 2} \over { - 1}}$$ is :
JEE Main 2019 (Online) 9th January Morning Slot
205
The plane through the intersection of the planes x + y + z = 1 and 2x + 3y – z + 4 = 0 and parallel to y-axis also passes through the point :
JEE Main 2019 (Online) 9th January Morning Slot
206
If the angle between the lines, $${x \over 2} = {y \over 2} = {z \over 1}$$

and $${{5 - x} \over { - 2}} = {{7y - 14} \over p} = {{z - 3} \over 4}\,\,$$ is $${\cos ^{ - 1}}\left( {{2 \over 3}} \right),$$ then p is equal to :
JEE Main 2018 (Online) 16th April Morning Slot
207
The sum of the intercepts on the coordinate axes of the plane passing through the point ($$-$$2, $$-2,$$ 2) and containing the line joining the points (1, $$-$$1, 2) and (1, 1, 1) is :
JEE Main 2018 (Online) 16th April Morning Slot
208
If L1 is the line of intersection of the planes 2x - 2y + 3z - 2 = 0, x - y + z + 1 = 0 and L2 is the line of intersection of the planes x + 2y - z - 3 = 0, 3x - y + 2z - 1 = 0, then the distance of the origin from the plane, containing the lines L1 and L2, is :
JEE Main 2018 (Offline)
209
The length of the projection of the line segment joining the points (5, -1, 4) and (4, -1, 3) on the plane, x + y + z = 7 is :
JEE Main 2018 (Offline)
210
An angle between the lines whose direction cosines are gien by the equations,
$$l$$ + 3m + 5n = 0 and 5$$l$$m $$-$$ 2mn + 6n$$l$$ = 0, is :
JEE Main 2018 (Online) 15th April Evening Slot
211
A plane bisects the line segment joining the points (1, 2, 3) and ($$-$$ 3, 4, 5) at rigt angles. Then this plane also passes through the point :
JEE Main 2018 (Online) 15th April Evening Slot
212
A variable plane passes through a fixed point (3,2,1) and meets x, y and z axes at A, B and C respectively. A plane is drawn parallel to yz -plane through A, a second plane is drawn parallel zx-plane through B and a third plane is drawn parallel to xy-plane through C. Then the locus of the point of intersection of these three planes, is :
JEE Main 2018 (Online) 15th April Morning Slot
213
An angle between the plane, x + y + z = 5 and the line of intersection of the planes, 3x + 4y + z $$-$$ 1 = 0 and 5x + 8y + 2z + 14 =0, is :
JEE Main 2018 (Online) 15th April Morning Slot
214
If x = a, y = b, z = c is a solution of the system of linear equations

x + 8y + 7z = 0

9x + 2y + 3z = 0

x + y + z = 0

such that the point (a, b, c) lies on the plane x + 2y + z = 6, then 2a + b + c equals :
JEE Main 2017 (Online) 9th April Morning Slot
215
If a variable plane, at a distance of 3 units from the origin, intersects the coordinate axes at A, B and C, then the locus of the centroid of $$\Delta $$ABC is :
JEE Main 2017 (Online) 9th April Morning Slot
216
If the line, $${{x - 3} \over 1} = {{y + 2} \over { - 1}} = {{z + \lambda } \over { - 2}}$$ lies in the plane, 2x−4y+3z=2, then the shortest distance between this line and the line, $${{x - 1} \over {12}} = {y \over 9} = {z \over 4}$$ is :
JEE Main 2017 (Online) 9th April Morning Slot
217
The coordinates of the foot of the perpendicular from the point (1, $$-$$2, 1) on the plane containing the lines, $${{x + 1} \over 6} = {{y - 1} \over 7} = {{z - 3} \over 8}$$ and $${{x - 1} \over 3} = {{y - 2} \over 5} = {{z - 3} \over 7},$$ is :
JEE Main 2017 (Online) 8th April Morning Slot
218
The line of intersection of the planes $$\overrightarrow r .\left( {3\widehat i - \widehat j + \widehat k} \right) = 1\,\,$$ and
$$\overrightarrow r .\left( {\widehat i + 4\widehat j - 2\widehat k} \right) = 2,$$ is :
JEE Main 2017 (Online) 8th April Morning Slot
219
The distance of the point (1, 3, – 7) from the plane passing through the point (1, –1, – 1), having normal perpendicular to both the lines

$${{x - 1} \over 1} = {{y + 2} \over { - 2}} = {{z - 4} \over 3}$$

and

$${{x - 2} \over 2} = {{y + 1} \over { - 1}} = {{z + 7} \over { - 1}}$$ is :
JEE Main 2017 (Offline)
220
If the image of the point P(1, –2, 3) in the plane, 2x + 3y – 4z + 22 = 0 measured parallel to the line,

$${x \over 1} = {y \over 4} = {z \over 5}$$ is Q, then PQ is equal to:
JEE Main 2017 (Offline)
221
The number of distinct real values of $$\lambda $$ for which the lines

$${{x - 1} \over 1} = {{y - 2} \over 2} = {{z + 3} \over {{\lambda ^2}}}$$ and $${{x - 3} \over 1} = {{y - 2} \over {{\lambda ^2}}} = {{z - 1} \over 2}$$ are coplanar is :
JEE Main 2016 (Online) 10th April Morning Slot
222
ABC is a triangle in a plane with vertices

A(2, 3, 5), B(−1, 3, 2) and C($$\lambda $$, 5, $$\mu $$).

If the median through A is equally inclined to the coordinate axes, then the value of ($$\lambda $$3 + $$\mu $$3 + 5) is :
JEE Main 2016 (Online) 10th April Morning Slot
223
The distance of the point (1, − 2, 4) from the plane passing through the point (1, 2, 2) and perpendicular to the planes x − y + 2z = 3 and 2x − 2y + z + 12 = 0, is :
JEE Main 2016 (Online) 9th April Morning Slot
224
The shortest distance between the lines $${x \over 2} = {y \over 2} = {z \over 1}$$ and
$${{x + 2} \over { - 1}} = {{y - 4} \over 8} = {{z - 5} \over 4}$$ lies in the interval :
JEE Main 2016 (Online) 9th April Morning Slot
225
If the line, $${{x - 3} \over 2} = {{y + 2} \over { - 1}} = {{z + 4} \over 3}\,$$ lies in the planes, $$lx+my-z=9,$$ then $${l^2} + {m^2}$$ is equal to :
JEE Main 2016 (Offline)
226
The distance of the point $$(1,-5,9)$$ from the plane $$x-y+z=5$$ measured along the line $$x=y=z$$ is :
JEE Main 2016 (Offline)
227
The equation of the plane containing the line $$2x-5y+z=3; x+y+4z=5,$$ and parallel to the plane, $$x+3y+6z=1,$$ is :
JEE Main 2015 (Offline)
228
The distance of the point $$(1, 0, 2)$$ from the point of intersection of the line $${{x - 2} \over 3} = {{y + 1} \over 4} = {{z - 2} \over {12}}$$ and the plane $$x - y + z = 16,$$ is :
JEE Main 2015 (Offline)
229
The image of the line $${{x - 1} \over 3} = {{y - 3} \over 1} = {{z - 4} \over { - 5}}\,$$ in the plane $$2x-y+z+3=0$$ is the line :
JEE Main 2014 (Offline)
230
The angle between the lines whose direction cosines satisfy the equations $$l+m+n=0$$ and $${l^2} = {m^2} + {n^2}$$ is :
JEE Main 2014 (Offline)
231
Distance between two parallel planes $$2x+y+2z=8$$ and $$4x+2y+4z+5=0$$ is :
JEE Main 2013 (Offline)
232
If the lines $${{x - 2} \over 1} = {{y - 3} \over 1} = {{z - 4} \over { - k}}$$ and $${{x - 1} \over k} = {{y - 4} \over 2} = {{z - 5} \over 1}$$ are coplanar, then $$k$$ can have :
JEE Main 2013 (Offline)
233
A equation of a plane parallel to the plane $$x-2y+2z-5=0$$ and at a unit distance from the origin is :
AIEEE 2012
234
If the line $${{x - 1} \over 2} = {{y + 1} \over 3} = {{z - 1} \over 4}$$ and $${{x - 3} \over 1} = {{y - k} \over 2} = {z \over 1}$$ intersect, then $$k$$ is equal to :
AIEEE 2012
235
If the angle between the line $$x = {{y - 1} \over 2} = {{z - 3} \over \lambda }$$ and the plane

$$x+2y+3z=4$$ is $${\cos ^{ - 1}}\left( {\sqrt {{5 \over {14}}} } \right),$$ then $$\lambda $$ equals :
AIEEE 2011
236
Statement - 1 : The point $$A(1,0,7)$$ is the mirror image of the point

$$B(1,6,3)$$ in the line : $${x \over 1} = {{y - 1} \over 2} = {{z - 2} \over 3}$$

Statement - 2 : The line $${x \over 1} = {{y - 1} \over 2} = {{z - 2} \over 3}$$ bisects the line

segment joining $$A(1,0,7)$$ and $$B(1, 6, 3)$$
AIEEE 2011
237
Statement-1 : The point $$A(3, 1, 6)$$ is the mirror image of the point $$B(1, 3, 4)$$ in the plane $$x-y+z=5.$$

Statement-2 : The plane $$x-y+z=5$$ bisects the line segment joining $$A(3, 1, 6)$$ and $$B(1, 3, 4).$$
AIEEE 2010
238
A line $$AB$$ in three-dimensional space makes angles $${45^ \circ }$$ and $${120^ \circ }$$ with the positive $$x$$-axis and the positive $$y$$-axis respectively. If $$AB$$ makes an acute angle $$\theta $$ with the positive $$z$$-axis, then $$\theta $$ equals :
AIEEE 2010
239
Let the line $$\,\,\,\,\,$$ $${{x - 2} \over 3} = {{y - 1} \over { - 5}} = {{z + 2} \over 2}$$ lie in the plane $$\,\,\,\,\,$$ $$x + 3y - \alpha z + \beta = 0.$$ Then $$\left( {\alpha ,\beta } \right)$$ equals
AIEEE 2009
240
The projections of a vector on the three coordinate axis are $$6,-3,2$$ respectively. The direction cosines of the vector are :
AIEEE 2009
241
The line passing through the points $$(5,1,a)$$ and $$(3, b, 1)$$ crosses the $$yz$$-plane at the point $$\left( {0,{{17} \over 2}, - {{ - 13} \over 2}} \right)$$ . Then
AIEEE 2008
242
If the straight lines $$\,\,\,\,\,$$ $$\,\,\,\,\,$$ $${{x - 1} \over k} = {{y - 2} \over 2} = {{z - 3} \over 3}$$ $$\,\,\,\,\,$$ and$$\,\,\,\,\,$$ $${{x - 2} \over 3} = {{y - 3} \over k} = {{z - 1} \over 2}$$ intersects at a point, then the integer $$k$$ is equal to
AIEEE 2008
243
Let $$L$$ be the line of intersection of the planes $$2x+3y+z=1$$ and $$x+3y+2z=2.$$ If $$L$$ makes an angle $$\alpha $$ with the positive $$x$$-axis, then cos $$\alpha $$ equals
AIEEE 2007
244
If $$(2,3,5)$$ is one end of a diameter of the sphere $${x^2} + {y^2} + {z^2} - 6x - 12y - 2z + 20 = 0,$$ then the coordinates of the other end of the diameter are
AIEEE 2007
245
If a line makes an angle of $$\pi /4$$ with the positive directions of each of $$x$$-axis and $$y$$-axis, then the angle that the line makes with the positive direction of the $$z$$-axis is :
AIEEE 2007
246
The image of the point $$(-1, 3,4)$$ in the plane $$x-2y=0$$ is :
AIEEE 2006
247
The two lines $$x=ay+b, z=cy+d;$$ and $$x=a'y+b' ,$$ $$z=c'y+d'$$ are perpendicular to each other if :
AIEEE 2006
248
The distance between the line

$$\overrightarrow r = 2\widehat i - 2\widehat j + 3\widehat k + \lambda \left( {i - j + 4k} \right),$$ and the plane

$$\overrightarrow r .\left( {\widehat i + 5\widehat j + \widehat k} \right) = 5$$ is
AIEEE 2005
249
The angle between the lines $$2x=3y=-z$$ and $$6x=-y=-4z$$ is :
AIEEE 2005
250
If the plane $$2ax-3ay+4az+6=0$$ passes through the midpoint of the line joining the centres of the spheres

$${x^2} + {y^2} + {z^2} + 6x - 8y - 2z = 13$$ and

$${x^2} + {y^2} + {z^2} - 10x + 4y - 2z = 8$$ then a equals :
AIEEE 2005
251
The plane $$x+2y-z=4$$ cuts the sphere $${x^2} + {y^2} + {z^2} - x + z - 2 = 0$$ in a circle of radius
AIEEE 2005
252
If the angel $$\theta $$ between the line $${{x + 1} \over 1} = {{y - 1} \over 2} = {{z - 2} \over 2}$$ and

the plane $$2x - y + \sqrt \lambda \,\,z + 4 = 0$$ is such that $$\sin \,\,\theta = {1 \over 3}$$ then value of $$\lambda $$ is :
AIEEE 2005
253
A line makes the same angle $$\theta $$, with each of the $$x$$ and $$z$$ axis.

If the angle $$\beta \,$$, which it makes with y-axis, is such that $$\,{\sin ^2}\beta = 3{\sin ^2}\theta ,$$ then $${\cos ^2}\theta $$ equals :
AIEEE 2004
254
If the straight lines
$$x=1+s,y=-3$$$$ - \lambda s,$$ $$z = 1 + \lambda s$$ and $$x = {t \over 2},y = 1 + t,z = 2 - t,$$ with parameters $$s$$ and $$t$$ respectively, are co-planar, then $$\lambda $$ equals :
AIEEE 2004
255
A line with direction cosines proportional to $$2,1,2$$ meets each of the lines $$x=y+a=z$$ and $$x+a=2y=2z$$ . The co-ordinates of each of the points of intersection are given by :
AIEEE 2004
256
Distance between two parallel planes

$$\,2x + y + 2z = 8$$ and $$4x + 2y + 4z + 5 = 0$$ is :
AIEEE 2004
257
The intersection of the spheres
$${x^2} + {y^2} + {z^2} + 7x - 2y - z = 13$$ and
$${x^2} + {y^2} + {z^2} - 3x + 3y + 4z = 8$$
is the same as the intersection of one of the sphere and the plane
AIEEE 2004
258
The shortest distance from the plane $$12x+4y+3z=327$$ to the sphere

$${x^2} + {y^2} + {z^2} + 4x - 2y - 6z = 155$$ is
AIEEE 2003
259
The two lines $$x=ay+b,z=cy+d$$ and $$x = a'y + b',z = c'y + d'$$ will be perpendicular, if and only if :
AIEEE 2003
260
The lines $${{x - 2} \over 1} = {{y - 3} \over 1} = {{z - 4} \over { - k}}$$ and $${{x - 1} \over k} = {{y - 4} \over 2} = {{z - 5} \over 1}$$ are coplanar if :
AIEEE 2003
261
The radius of the circle in which the sphere

$${x^2} + {y^2} + {z^2} + 2x - 2y - 4z - 19 = 0$$ is cut by the plane

$$x+2y+2z+7=0$$ is
AIEEE 2003
262
Two systems of rectangular axes have the same origin. If a plane cuts then at distances $$a,b,c$$ and $$a', b', c'$$ from the origin then
AIEEE 2003
263
A plane which passes through the point $$(3,2,0)$$ and the line

$${{x - 4} \over 1} = {{y - 7} \over 5} = {{z - 4} \over 4}$$ is :
AIEEE 2002
264
The $$d.r.$$ of normal to the plane through $$(1, 0, 0), (0, 1, 0)$$ which makes an angle $$\pi /4$$ with plane $$x+y=3$$ are :
AIEEE 2002

Numerical

1

Let P be the image of the point $\mathrm{Q}(7,-2,5)$ in the line $\mathrm{L}: \frac{x-1}{2}=\frac{y+1}{3}=\frac{z}{4}$ and $\mathrm{R}(5, \mathrm{p}, \mathrm{q})$ be a point on $L$. Then the square of the area of $\triangle P Q R$ is _________.

JEE Main 2025 (Online) 24th January Evening Shift
2

Let $\mathrm{L}_1: \frac{x-1}{3}=\frac{y-1}{-1}=\frac{z+1}{0}$ and $\mathrm{L}_2: \frac{x-2}{2}=\frac{y}{0}=\frac{z+4}{\alpha}, \alpha \in \mathbf{R}$, be two lines, which intersect at the point $B$. If $P$ is the foot of perpendicular from the point $A(1,1,-1)$ on $L_2$, then the value of $26 \alpha(\mathrm{~PB})^2$ is _________ .

JEE Main 2025 (Online) 22nd January Morning Shift
3

The square of the distance of the image of the point $$(6,1,5)$$ in the line $$\frac{x-1}{3}=\frac{y}{2}=\frac{z-2}{4}$$, from the origin is __________.

JEE Main 2024 (Online) 9th April Evening Shift
4

Let $$\mathrm{P}(\alpha, \beta, \gamma)$$ be the image of the point $$\mathrm{Q}(1,6,4)$$ in the line $$\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$$. Then $$2 \alpha+\beta+\gamma$$ is equal to ________

JEE Main 2024 (Online) 8th April Evening Shift
5

If the shortest distance between the lines $$\frac{x-\lambda}{3}=\frac{y-2}{-1}=\frac{z-1}{1}$$ and $$\frac{x+2}{-3}=\frac{y+5}{2}=\frac{z-4}{4}$$ is $$\frac{44}{\sqrt{30}}$$, then the largest possible value of $$|\lambda|$$ is equal to _________.

JEE Main 2024 (Online) 6th April Evening Shift
6

Let $$P$$ be the point $$(10,-2,-1)$$ and $$Q$$ be the foot of the perpendicular drawn from the point $$R(1,7,6)$$ on the line passing through the points $$(2,-5,11)$$ and $$(-6,7,-5)$$. Then the length of the line segment $$P Q$$ is equal to _________.

JEE Main 2024 (Online) 6th April Morning Shift
7

Let the point $$(-1, \alpha, \beta)$$ lie on the line of the shortest distance between the lines $$\frac{x+2}{-3}=\frac{y-2}{4}=\frac{z-5}{2}$$ and $$\frac{x+2}{-1}=\frac{y+6}{2}=\frac{z-1}{0}$$. Then $$(\alpha-\beta)^2$$ is equal to _________.

JEE Main 2024 (Online) 5th April Evening Shift
8

Consider a line $$\mathrm{L}$$ passing through the points $$\mathrm{P}(1,2,1)$$ and $$\mathrm{Q}(2,1,-1)$$. If the mirror image of the point $$\mathrm{A}(2,2,2)$$ in the line $$\mathrm{L}$$ is $$(\alpha, \beta, \gamma)$$, then $$\alpha+\beta+6 \gamma$$ is equal to __________.

JEE Main 2024 (Online) 4th April Evening Shift
9
Let the line of the shortest distance between the lines

$$ \begin{aligned} & \mathrm{L}_1: \overrightarrow{\mathrm{r}}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \text { and } \\\\ & \mathrm{L}_2: \overrightarrow{\mathrm{r}}=(4 \hat{i}+5 \hat{j}+6 \hat{k})+\mu(\hat{i}+\hat{j}-\hat{k}) \end{aligned} $$

intersect $\mathrm{L}_1$ and $\mathrm{L}_2$ at $\mathrm{P}$ and $\mathrm{Q}$ respectively. If $(\alpha, \beta, \gamma)$ is the mid point of the line segment $\mathrm{PQ}$, then $2(\alpha+\beta+\gamma)$ is equal to ____________.
JEE Main 2024 (Online) 1st February Morning Shift
10

A line passes through $$A(4,-6,-2)$$ and $$B(16,-2,4)$$. The point $$P(a, b, c)$$, where $$a, b, c$$ are non-negative integers, on the line $$A B$$ lies at a distance of 21 units, from the point $$A$$. The distance between the points $$P(a, b, c)$$ and $$Q(4,-12,3)$$ is equal to __________.

JEE Main 2024 (Online) 31st January Evening Shift
11

Let $$\mathrm{Q}$$ and $$\mathrm{R}$$ be the feet of perpendiculars from the point $$\mathrm{P}(a, a, a)$$ on the lines $$x=y, z=1$$ and $$x=-y, z=-1$$ respectively. If $$\angle \mathrm{QPR}$$ is a right angle, then $$12 a^2$$ is equal to _________.

JEE Main 2024 (Online) 31st January Morning Shift
12

Let a line passing through the point $$(-1,2,3)$$ intersect the lines $$L_1: \frac{x-1}{3}=\frac{y-2}{2}=\frac{z+1}{-2}$$ at $$M(\alpha, \beta, \gamma)$$ and $$L_2: \frac{x+2}{-3}=\frac{y-2}{-2}=\frac{z-1}{4}$$ at $$N(a, b, c)$$. Then, the value of $$\frac{(\alpha+\beta+\gamma)^2}{(a+b+c)^2}$$ equals __________.

JEE Main 2024 (Online) 30th January Evening Shift
13

If $$\mathrm{d}_1$$ is the shortest distance between the lines $$x+1=2 y=-12 z, x=y+2=6 z-6$$ and $$\mathrm{d}_2$$ is the shortest distance between the lines $$\frac{x-1}{2}=\frac{y+8}{-7}=\frac{z-4}{5}, \frac{x-1}{2}=\frac{y-2}{1}=\frac{z-6}{-3}$$, then the value of $$\frac{32 \sqrt{3} \mathrm{~d}_1}{\mathrm{~d}_2}$$ is :

JEE Main 2024 (Online) 30th January Morning Shift
14

Let O be the origin, and M and $$\mathrm{N}$$ be the points on the lines $$\frac{x-5}{4}=\frac{y-4}{1}=\frac{z-5}{3}$$ and $$\frac{x+8}{12}=\frac{y+2}{5}=\frac{z+11}{9}$$ respectively such that $$\mathrm{MN}$$ is the shortest distance between the given lines. Then $$\overrightarrow{O M} \cdot \overrightarrow{O N}$$ is equal to _________.

JEE Main 2024 (Online) 29th January Evening Shift
15

A line with direction ratios $$2,1,2$$ meets the lines $$x=y+2=z$$ and $$x+2=2 y=2 z$$ respectively at the points $$\mathrm{P}$$ and $$\mathrm{Q}$$. If the length of the perpendicular from the point $$(1,2,12)$$ to the line $$\mathrm{PQ}$$ is $$l$$, then $$l^2$$ is __________.

JEE Main 2024 (Online) 29th January Morning Shift
16

The lines $$\frac{x-2}{2}=\frac{y}{-2}=\frac{z-7}{16}$$ and $$\frac{x+3}{4}=\frac{y+2}{3}=\frac{z+2}{1}$$ intersect at the point $$P$$. If the distance of $$\mathrm{P}$$ from the line $$\frac{x+1}{2}=\frac{y-1}{3}=\frac{z-1}{1}$$ is $$l$$, then $$14 l^2$$ is equal to __________.

JEE Main 2024 (Online) 27th January Evening Shift
17
Let the plane $P$ contain the line $2 x+y-z-3=0=5 x-3 y+4 z+9$ and be

parallel to the line $\frac{x+2}{2}=\frac{3-y}{-4}=\frac{z-7}{5}$. Then the distance of the point

$\mathrm{A}(8,-1,-19)$ from the plane $\mathrm{P}$ measured parallel to the line $\frac{x}{-3}=\frac{y-5}{4}=\frac{2-z}{-12}$

is equal to ______________.
JEE Main 2023 (Online) 15th April Morning Shift
18

Let the image of the point $$\left(\frac{5}{3}, \frac{5}{3}, \frac{8}{3}\right)$$ in the plane $$x-2 y+z-2=0$$ be P. If the distance of the point $$Q(6,-2, \alpha), \alpha > 0$$, from $$\mathrm{P}$$ is 13 , then $$\alpha$$ is equal to ___________.

JEE Main 2023 (Online) 13th April Morning Shift
19

Let the plane $$x+3 y-2 z+6=0$$ meet the co-ordinate axes at the points A, B, C. If the orthocenter of the triangle $$\mathrm{ABC}$$ is $$\left(\alpha, \beta, \frac{6}{7}\right)$$, then $$98(\alpha+\beta)^{2}$$ is equal to ___________.

JEE Main 2023 (Online) 12th April Morning Shift
20

Let the line $$l: x=\frac{1-y}{-2}=\frac{z-3}{\lambda}, \lambda \in \mathbb{R}$$ meet the plane $$P: x+2 y+3 z=4$$ at the point $$(\alpha, \beta, \gamma)$$. If the angle between the line $$l$$ and the plane $$P$$ is $$\cos ^{-1}\left(\sqrt{\frac{5}{14}}\right)$$, then $$\alpha+2 \beta+6 \gamma$$ is equal to ___________.

JEE Main 2023 (Online) 11th April Evening Shift
21

Let a line $$l$$ pass through the origin and be perpendicular to the lines

$$l_{1}: \vec{r}=(\hat{\imath}-11 \hat{\jmath}-7 \hat{k})+\lambda(\hat{i}+2 \hat{\jmath}+3 \hat{k}), \lambda \in \mathbb{R}$$ and

$$l_{2}: \vec{r}=(-\hat{\imath}+\hat{\mathrm{k}})+\mu(2 \hat{\imath}+2 \hat{\jmath}+\hat{\mathrm{k}}), \mu \in \mathbb{R}$$.

If $$\mathrm{P}$$ is the point of intersection of $$l$$ and $$l_{1}$$, and $$\mathrm{Q}(\propto, \beta, \gamma)$$ is the foot of perpendicular from P on $$l_{2}$$, then $$9(\alpha+\beta+\gamma)$$ is equal to _____________.

JEE Main 2023 (Online) 11th April Morning Shift
22

Let the foot of perpendicular from the point $$\mathrm{A}(4,3,1)$$ on the plane $$\mathrm{P}: x-y+2 z+3=0$$ be N. If B$$(5, \alpha, \beta), \alpha, \beta \in \mathbb{Z}$$ is a point on plane P such that the area of the triangle ABN is $$3 \sqrt{2}$$, then $$\alpha^{2}+\beta^{2}+\alpha \beta$$ is equal to ___________.

JEE Main 2023 (Online) 10th April Evening Shift
23

Let $$\mathrm{P}_{1}$$ be the plane $$3 x-y-7 z=11$$ and $$\mathrm{P}_{2}$$ be the plane passing through the points $$(2,-1,0),(2,0,-1)$$, and $$(5,1,1)$$. If the foot of the perpendicular drawn from the point $$(7,4,-1)$$ on the line of intersection of the planes $$P_{1}$$ and $$P_{2}$$ is $$(\alpha, \beta, \gamma)$$, then $$\alpha+\beta+\gamma$$ is equal to ___________.

JEE Main 2023 (Online) 8th April Evening Shift
24

Let $$\lambda_{1}, \lambda_{2}$$ be the values of $$\lambda$$ for which the points $$\left(\frac{5}{2}, 1, \lambda\right)$$ and $$(-2,0,1)$$ are at equal distance from the plane $$2 x+3 y-6 z+7=0$$. If $$\lambda_{1} > \lambda_{2}$$, then the distance of the point $$\left(\lambda_{1}-\lambda_{2}, \lambda_{2}, \lambda_{1}\right)$$ from the line $$\frac{x-5}{1}=\frac{y-1}{2}=\frac{z+7}{2}$$ is ____________.

JEE Main 2023 (Online) 8th April Morning Shift
25

If the lines $$\frac{x-1}{2}=\frac{2-y}{-3}=\frac{z-3}{\alpha}$$ and $$\frac{x-4}{5}=\frac{y-1}{2}=\frac{z}{\beta}$$ intersect, then the magnitude of the minimum value of $$8 \alpha \beta$$ is _____________.

JEE Main 2023 (Online) 6th April Evening Shift
26

Let the image of the point $$\mathrm{P}(1,2,3)$$ in the plane $$2 x-y+z=9$$ be $$\mathrm{Q}$$. If the coordinates of the point $$\mathrm{R}$$ are $$(6,10,7)$$, then the square of the area of the triangle $$\mathrm{PQR}$$ is _____________.

JEE Main 2023 (Online) 6th April Morning Shift
27

The point of intersection $$\mathrm{C}$$ of the plane $$8 x+y+2 z=0$$ and the line joining the points $$\mathrm{A}(-3,-6,1)$$ and $$\mathrm{B}(2,4,-3)$$ divides the line segment $$\mathrm{AB}$$ internally in the ratio $$\mathrm{k}: 1$$. If $$\mathrm{a}, \mathrm{b}, \mathrm{c}(|\mathrm{a}|,|\mathrm{b}|,|\mathrm{c}|$$ are coprime) are the direction ratios of the perpendicular from the point $$\mathrm{C}$$ on the line $$\frac{1-x}{1}=\frac{y+4}{2}=\frac{z+2}{3}$$, then $$|\mathrm{a}+\mathrm{b}+\mathrm{c}|$$ is equal to ___________.

JEE Main 2023 (Online) 1st February Evening Shift
28

Let $$\alpha x+\beta y+\gamma z=1$$ be the equation of a plane passing through the point $$(3,-2,5)$$ and perpendicular to the line joining the points $$(1,2,3)$$ and $$(-2,3,5)$$. Then the value of $$\alpha \beta y$$ is equal to _____________.

JEE Main 2023 (Online) 1st February Evening Shift
29

Let the line $$L: \frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{1}$$ intersect the plane $$2 x+y+3 z=16$$ at the point $$P$$. Let the point $$Q$$ be the foot of perpendicular from the point $$R(1,-1,-3)$$ on the line $$L$$. If $$\alpha$$ is the area of triangle $$P Q R$$, then $$\alpha^{2}$$ is equal to __________.

JEE Main 2023 (Online) 31st January Morning Shift
30

Let $$\theta$$ be the angle between the planes $$P_{1}: \vec{r} \cdot(\hat{i}+\hat{j}+2 \hat{k})=9$$ and $$P_{2}: \vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=15$$. Let $$\mathrm{L}$$ be the line that meets $$P_{2}$$ at the point $$(4,-2,5)$$ and makes an angle $$\theta$$ with the normal of $$P_{2}$$. If $$\alpha$$ is the angle between $$\mathrm{L}$$ and $$P_{2}$$, then $$\left(\tan ^{2} \theta\right)\left(\cot ^{2} \alpha\right)$$ is equal to ____________.

JEE Main 2023 (Online) 31st January Morning Shift
31
Let a line $L$ pass through the point $P(2,3,1)$ and be parallel to the line $x+3 y-2 z-2=0=x-y+2 z$. If the distance of $L$ from the point $(5,3,8)$ is $\alpha$, then $3 \alpha^2$ is equal to :
JEE Main 2023 (Online) 30th January Evening Shift
32

If the equation of the plane passing through the point $$(1,1,2)$$ and perpendicular to the line $$x-3 y+ 2 z-1=0=4 x-y+z$$ is $$\mathrm{A} x+\mathrm{B} y+\mathrm{C} z=1$$, then $$140(\mathrm{C}-\mathrm{B}+\mathrm{A})$$ is equal to ___________.

JEE Main 2023 (Online) 30th January Morning Shift
33

If $$\lambda_{1} < \lambda_{2}$$ are two values of $$\lambda$$ such that the angle between the planes $$P_{1}: \vec{r}(3 \hat{i}-5 \hat{j}+\hat{k})=7$$ and $$P_{2}: \vec{r} \cdot(\lambda \hat{i}+\hat{j}-3 \hat{k})=9$$ is $$\sin ^{-1}\left(\frac{2 \sqrt{6}}{5}\right)$$, then the square of the length of perpendicular from the point $$\left(38 \lambda_{1}, 10 \lambda_{2}, 2\right)$$ to the plane $$P_{1}$$ is ______________.

JEE Main 2023 (Online) 30th January Morning Shift
34

Let the equation of the plane P containing the line $$x+10=\frac{8-y}{2}=z$$ be $$ax+by+3z=2(a+b)$$ and the distance of the plane $$P$$ from the point (1, 27, 7) be $$c$$. Then $$a^2+b^2+c^2$$ is equal to __________.

JEE Main 2023 (Online) 29th January Morning Shift
35

Let the co-ordinates of one vertex of $$\Delta ABC$$ be $$A(0,2,\alpha)$$ and the other two vertices lie on the line $${{x + \alpha } \over 5} = {{y - 1} \over 2} = {{z + 4} \over 3}$$. For $$\alpha \in \mathbb{Z}$$, if the area of $$\Delta ABC$$ is 21 sq. units and the line segment $$BC$$ has length $$2\sqrt{21}$$ units, then $$\alpha^2$$ is equal to ___________.

JEE Main 2023 (Online) 29th January Morning Shift
36

If the shortest distance between the line joining the points (1, 2, 3) and (2, 3, 4), and the line $${{x - 1} \over 2} = {{y + 1} \over { - 1}} = {{z - 2} \over 0}$$ is $$\alpha$$, then 28$$\alpha^2$$ is equal to ____________.

JEE Main 2023 (Online) 25th January Evening Shift
37

Let the equation of the plane passing through the line $$x - 2y - z - 5 = 0 = x + y + 3z - 5$$ and parallel to the line $$x + y + 2z - 7 = 0 = 2x + 3y + z - 2$$ be $$ax + by + cz = 65$$. Then the distance of the point (a, b, c) from the plane $$2x + 2y - z + 16 = 0$$ is ____________.

JEE Main 2023 (Online) 25th January Morning Shift
38

If the shortest between the lines $${{x + \sqrt 6 } \over 2} = {{y - \sqrt 6 } \over 3} = {{z - \sqrt 6 } \over 4}$$ and $${{x - \lambda } \over 3} = {{y - 2\sqrt 6 } \over 4} = {{z + 2\sqrt 6 } \over 5}$$ is 6, then the square of sum of all possible values of $$\lambda$$ is :

JEE Main 2023 (Online) 24th January Evening Shift
39

The shortest distance between the lines $${{x - 2} \over 3} = {{y + 1} \over 2} = {{z - 6} \over 2}$$ and $${{x - 6} \over 3} = {{1 - y} \over 2} = {{z + 8} \over 0}$$ is equal to ________

JEE Main 2023 (Online) 24th January Morning Shift
40

Let a line with direction ratios $$a,-4 a,-7$$ be perpendicular to the lines with direction ratios $$3,-1,2 b$$ and $$b, a,-2$$. If the point of intersection of the line $$\frac{x+1}{a^{2}+b^{2}}=\frac{y-2}{a^{2}-b^{2}}=\frac{z}{1}$$ and the plane $$x-y+z=0$$ is $$(\alpha, \beta, \gamma)$$, then $$\alpha+\beta+\gamma$$ is equal to _________.

JEE Main 2022 (Online) 29th July Morning Shift
41

Let $$\mathrm{P}(-2,-1,1)$$ and $$\mathrm{Q}\left(\frac{56}{17}, \frac{43}{17}, \frac{111}{17}\right)$$ be the vertices of the rhombus PRQS. If the direction ratios of the diagonal RS are $$\alpha,-1, \beta$$, where both $$\alpha$$ and $$\beta$$ are integers of minimum absolute values, then $$\alpha^{2}+\beta^{2}$$ is equal to ____________.

JEE Main 2022 (Online) 28th July Morning Shift
42

Let the line $$\frac{x-3}{7}=\frac{y-2}{-1}=\frac{z-3}{-4}$$ intersect the plane containing the lines $$\frac{x-4}{1}=\frac{y+1}{-2}=\frac{z}{1}$$ and $$4 a x-y+5 z-7 a=0=2 x-5 y-z-3, a \in \mathbb{R}$$ at the point $$P(\alpha, \beta, \gamma)$$. Then the value of $$\alpha+\beta+\gamma$$ equals _____________.

JEE Main 2022 (Online) 27th July Morning Shift
43

The largest value of $$a$$, for which the perpendicular distance of the plane containing the lines $$ \vec{r}=(\hat{i}+\hat{j})+\lambda(\hat{i}+a \hat{j}-\hat{k})$$ and $$\vec{r}=(\hat{i}+\hat{j})+\mu(-\hat{i}+\hat{j}-a \hat{k})$$ from the point $$(2,1,4)$$ is $$\sqrt{3}$$, is _________.

JEE Main 2022 (Online) 26th July Evening Shift
44

The plane passing through the line $$L: l x-y+3(1-l) z=1, x+2 y-z=2$$ and perpendicular to the plane $$3 x+2 y+z=6$$ is $$3 x-8 y+7 z=4$$. If $$\theta$$ is the acute angle between the line $$L$$ and the $$y$$-axis, then $$415 \cos ^{2} \theta$$ is equal to _____________.

JEE Main 2022 (Online) 26th July Evening Shift
45

Let $$\mathrm{Q}$$ and $$\mathrm{R}$$ be two points on the line $$\frac{x+1}{2}=\frac{y+2}{3}=\frac{z-1}{2}$$ at a distance $$\sqrt{26}$$ from the point $$P(4,2,7)$$. Then the square of the area of the triangle $$P Q R$$ is ___________.

JEE Main 2022 (Online) 26th July Morning Shift
46

The line of shortest distance between the lines $$\frac{x-2}{0}=\frac{y-1}{1}=\frac{z}{1}$$ and $$\frac{x-3}{2}=\frac{y-5}{2}=\frac{z-1}{1}$$ makes an angle of $$\cos ^{-1}\left(\sqrt{\frac{2}{27}}\right)$$ with the plane $$\mathrm{P}: \mathrm{a} x-y-z=0$$, $$(a>0)$$. If the image of the point $$(1,1,-5)$$ in the plane $$P$$ is $$(\alpha, \beta, \gamma)$$, then $$\alpha+\beta-\gamma$$ is equal to _________________.

JEE Main 2022 (Online) 25th July Morning Shift
47

Consider a triangle ABC whose vertices are A(0, $$\alpha$$, $$\alpha$$), B($$\alpha$$, 0, $$\alpha$$) and C($$\alpha$$, $$\alpha$$, 0), $$\alpha$$ > 0. Let D be a point moving on the line x + z $$-$$ 3 = 0 = y and G be the centroid of $$\Delta$$ABC. If the minimum length of GD is $$\sqrt {{{57} \over 2}} $$, then $$\alpha$$ is equal to ____________.

JEE Main 2022 (Online) 30th June Morning Shift
48

Let d be the distance between the foot of perpendiculars of the points P(1, 2, $$-$$1) and Q(2, $$-$$1, 3) on the plane $$-$$x + y + z = 1. Then d2 is equal to ___________.

JEE Main 2022 (Online) 29th June Morning Shift
49

Let $${P_1}:\overrightarrow r \,.\,\left( {2\widehat i + \widehat j - 3\widehat k} \right) = 4$$ be a plane. Let P2 be another plane which passes through the points (2, $$-$$3, 2), (2, $$-$$2, $$-$$3) and (1, $$-$$4, 2). If the direction ratios of the line of intersection of P1 and P2 be 16, $$\alpha$$, $$\beta$$, then the value of $$\alpha$$ + $$\beta$$ is equal to ________________.

JEE Main 2022 (Online) 29th June Morning Shift
50

Let the image of the point P(1, 2, 3) in the line $$L:{{x - 6} \over 3} = {{y - 1} \over 2} = {{z - 2} \over 3}$$ be Q. Let R ($$\alpha$$, $$\beta$$, $$\gamma$$) be a point that divides internally the line segment PQ in the ratio 1 : 3. Then the value of 22 ($$\alpha$$ + $$\beta$$ + $$\gamma$$) is equal to __________.

JEE Main 2022 (Online) 28th June Evening Shift
51

Let the mirror image of the point (a, b, c) with respect to the plane 3x $$-$$ 4y + 12z + 19 = 0 be (a $$-$$ 6, $$\beta$$, $$\gamma$$). If a + b + c = 5, then 7$$\beta$$ $$-$$ 9$$\gamma$$ is equal to ______________.

JEE Main 2022 (Online) 27th June Morning Shift
52

Let l1 be the line in xy-plane with x and y intercepts $${1 \over 8}$$ and $${1 \over {4\sqrt 2 }}$$ respectively, and l2 be the line in zx-plane with x and z intercepts $$ - {1 \over 8}$$ and $$ - {1 \over {6\sqrt 3 }}$$ respectively. If d is the shortest distance between the line l1 and l2, then d$$-$$2 is equal to _______________.

JEE Main 2022 (Online) 25th June Evening Shift
53

Let the lines

$${L_1}:\overrightarrow r = \lambda \left( {\widehat i + 2\widehat j + 3\widehat k} \right),\,\lambda \in R$$

$${L_2}:\overrightarrow r = \left( {\widehat i + 3\widehat j + \widehat k} \right) + \mu \left( {\widehat i + \widehat j + 5\widehat k} \right);\,\mu \in R$$,

intersect at the point S. If a plane ax + by $$-$$ z + d = 0 passes through S and is parallel to both the lines L1 and L2, then the value of a + b + d is equal to ____________.

JEE Main 2022 (Online) 25th June Morning Shift
54

Let a line having direction ratios, 1, $$-$$4, 2 intersect the lines $${{x - 7} \over 3} = {{y - 1} \over { - 1}} = {{z + 2} \over 1}$$ and $${x \over 2} = {{y - 7} \over 3} = {z \over 1}$$ at the points A and B. Then (AB)2 is equal to ___________.

JEE Main 2022 (Online) 24th June Morning Shift
55

If the shortest distance between the lines

$$\overrightarrow r = \left( { - \widehat i + 3\widehat k} \right) + \lambda \left( {\widehat i - a\widehat j} \right)$$

and $$\overrightarrow r = \left( { - \widehat j + 2\widehat k} \right) + \mu \left( {\widehat i - \widehat j + \widehat k} \right)$$ is $$\sqrt {{2 \over 3}} $$, then the integral value of a is equal to ___________.

JEE Main 2022 (Online) 24th June Morning Shift
56
Suppose, the line $${{x - 2} \over \alpha } = {{y - 2} \over { - 5}} = {{z + 2} \over 2}$$ lies on the plane $$x + 3y - 2z + \beta = 0$$. Then $$(\alpha + \beta )$$ is equal to _______.
JEE Main 2021 (Online) 31st August Evening Shift
57
The square of the distance of the point of intersection

of the line $${{x - 1} \over 2} = {{y - 2} \over 3} = {{z + 1} \over 6}$$ and the plane $$2x - y + z = 6$$ from the point ($$-$$1, $$-$$1, 2) is __________.
JEE Main 2021 (Online) 31st August Morning Shift
58
Let S be the mirror image of the point Q(1, 3, 4) with respect to the plane 2x $$-$$ y + z + 3 = 0 and let R(3, 5, $$\gamma$$) be a point of this plane. Then the square of the length of the line segment SR is ___________.
JEE Main 2021 (Online) 27th August Evening Shift
59
Let Q be the foot of the perpendicular from the point P(7, $$-$$2, 13) on the plane containing the lines $${{x + 1} \over 6} = {{y - 1} \over 7} = {{z - 3} \over 8}$$ and $${{x - 1} \over 3} = {{y - 2} \over 5} = {{z - 3} \over 7}$$. Then (PQ)2, is equal to ___________.
JEE Main 2021 (Online) 26th August Evening Shift
60
Let the line L be the projection of the line $${{x - 1} \over 2} = {{y - 3} \over 1} = {{z - 4} \over 2}$$ in the plane x $$-$$ 2y $$-$$ z = 3. If d is the distance of the point (0, 0, 6) from L, then d2 is equal to _______________.
JEE Main 2021 (Online) 26th August Morning Shift
61
The distance of the point P(3, 4, 4) from the point of intersection of the line joining the points. Q(3, $$-$$4, $$-$$5) and R(2, $$-$$3, 1) and the plane 2x + y + z = 7, is equal to ______________.
JEE Main 2021 (Online) 27th July Evening Shift
62
Let a plane P pass through the point (3, 7, $$-$$7) and contain the line, $${{x - 2} \over { - 3}} = {{y - 3} \over 2} = {{z + 2} \over 1}$$. If distance of the plane P from the origin is d, then d2 is equal to ______________.
JEE Main 2021 (Online) 27th July Morning Shift
63
If the lines $${{x - k} \over 1} = {{y - 2} \over 2} = {{z - 3} \over 3}$$ and
$${{x + 1} \over 3} = {{y + 2} \over 2} = {{z + 3} \over 1}$$ are co-planar, then the value of k is _____________.
JEE Main 2021 (Online) 25th July Evening Shift
64
Let P be a plane passing through the points (1, 0, 1), (1, $$-$$2, 1) and (0, 1, $$-$$2). Let a vector $$\overrightarrow a = \alpha \widehat i + \beta \widehat j + \gamma \widehat k$$ be such that $$\overrightarrow a $$ is parallel to the plane P, perpendicular to $$(\widehat i + 2\widehat j + 3\widehat k)$$ and $$\overrightarrow a \,.\,(\widehat i + \widehat j + 2\widehat k) = 2$$, then $${(\alpha - \beta + \gamma )^2}$$ equals ____________.
JEE Main 2021 (Online) 20th July Morning Shift
65
Let the mirror image of the point (1, 3, a) with respect to the plane $$\overrightarrow r .\left( {2\widehat i - \widehat j + \widehat k} \right) - b = 0$$ be ($$-$$3, 5, 2). Then, the value of | a + b | is equal to ____________.
JEE Main 2021 (Online) 18th March Evening Shift
66
Let P be a plane containing the line $${{x - 1} \over 3} = {{y + 6} \over 4} = {{z + 5} \over 2}$$ and parallel to the line $${{x - 1} \over 4} = {{y - 2} \over { - 3}} = {{z + 5} \over 7}$$. If the point (1, $$-$$1, $$\alpha$$) lies on the plane P, then the value of |5$$\alpha$$| is equal to ____________.
JEE Main 2021 (Online) 18th March Evening Shift
67
Let the plane ax + by + cz + d = 0 bisect the line joining the points (4, $$-$$3, 1) and (2, 3, $$-$$5) at the right angles. If a, b, c, d are integers, then the
minimum value of (a2 + b2 + c2 + d2) is _________.
JEE Main 2021 (Online) 18th March Morning Shift
68
The equation of the planes parallel to the plane x $$-$$ 2y + 2z $$-$$ 3 = 0 which are at unit distance from the point (1, 2, 3) is ax + by + cz + d = 0. If (b $$-$$ d) = k(c $$-$$ a), then the positive value of k is :
JEE Main 2021 (Online) 18th March Morning Shift
69
Let P be an arbitrary point having sum of the squares of the distances from the planes x + y + z = 0, lx $$-$$ nz = 0 and x $$-$$ 2y + z = 0, equal to 9. If the locus of the point P is x2 + y2 + z2 = 9, then the value of l $$-$$ n is equal to _________.
JEE Main 2021 (Online) 17th March Evening Shift
70
If the equation of the plane passing through the line of intersection of the planes 2x $$-$$ 7y + 4z $$-$$ 3 = 0, 3x $$-$$ 5y + 4z + 11 = 0 and the point ($$-$$2, 1, 3) is ax + by + cz $$-$$ 7 = 0, then the value of 2a + b + c $$-$$ 7 is ____________.
JEE Main 2021 (Online) 17th March Morning Shift
71
If the distance of the point (1, $$-$$2, 3) from the plane x + 2y $$-$$ 3z + 10 = 0 measured parallel to the line, $${{x - 1} \over 3} = {{2 - y} \over m} = {{z + 3} \over 1}$$ is $$\sqrt {{7 \over 2}} $$, then the value of |m| is equal to _________.
JEE Main 2021 (Online) 16th March Evening Shift
72
Let ($$\lambda$$, 2, 1) be a point on the plane which passes through the point (4, $$-$$2, 2). If the plane is perpendicular to the line joining the points ($$-$$2, $$-$$21, 29) and ($$-$$1, $$-$$16, 23), then $${\left( {{\lambda \over {11}}} \right)^2} - {{4\lambda } \over {11}} - 4$$ is equal to __________.
JEE Main 2021 (Online) 26th February Morning Shift
73
A line 'l' passing through origin is perpendicular to the lines

$${l_1}:\overrightarrow r = (3 + t)\widehat i + ( - 1 + 2t)\widehat j + (4 + 2t)\widehat k$$

$${l_2}:\overrightarrow r = (3 + 2s)\widehat i + (3 + 2s)\widehat j + (2 + s)\widehat k$$

If the co-ordinates of the point in the first octant on 'l2‘ at a distance of $$\sqrt {17} $$ from the point of intersection of 'l' and 'l1' are (a, b, c) then 18(a + b + c) is equal to ___________.
JEE Main 2021 (Online) 25th February Evening Shift
74
Let $$\lambda$$ be an integer. If the shortest distance between the lines

x $$-$$ $$\lambda$$ = 2y $$-$$ 1 = $$-$$2z and x = y + 2$$\lambda$$ = z $$-$$ $$\lambda$$ is $${{\sqrt 7 } \over {2\sqrt 2 }}$$, then the value of | $$\lambda$$ | is _________.
JEE Main 2021 (Online) 24th February Evening Shift
75
If the equation of a plane P, passing through the intersection of the planes,
x + 4y - z + 7 = 0 and 3x + y + 5z = 8 is ax + by + 6z = 15 for some a, b $$ \in $$ R, then the distance of the point (3, 2, -1) from the plane P is...........
JEE Main 2020 (Online) 4th September Morning Slot
76
Let a plane P contain two lines
$$\overrightarrow r = \widehat i + \lambda \left( {\widehat i + \widehat j} \right)$$, $$\lambda \in R$$ and
$$\overrightarrow r = - \widehat j + \mu \left( {\widehat j - \widehat k} \right)$$, $$\mu \in R$$
If Q($$\alpha $$, $$\beta $$, $$\gamma $$) is the foot of the perpendicular drawn from the point M(1, 0, 1) to P, then 3($$\alpha $$ + $$\beta $$ + $$\gamma $$) equals _______.
JEE Main 2020 (Online) 3rd September Evening Slot
77
If the distance between the plane, 23x – 10y – 2z + 48 = 0 and the plane

containing the lines $${{x + 1} \over 2} = {{y - 3} \over 4} = {{z + 1} \over 3}$$

and $${{x + 3} \over 2} = {{y + 2} \over 6} = {{z - 1} \over \lambda }\left( {\lambda \in R} \right)$$

is equal to $${k \over {\sqrt {633} }}$$, then k is equal to ______.
JEE Main 2020 (Online) 9th January Evening Slot
78
The projection of the line segment joining the points (1, –1, 3) and (2, –4, 11) on the line joining the points (–1, 2, 3) and (3, –2, 10) is ____________.
JEE Main 2020 (Online) 9th January Morning Slot
79
If the foot of the perpendicular drawn from the point (1, 0, 3) on a line passing through ($$\alpha $$, 7, 1) is $$\left( {{5 \over 3},{7 \over 3},{{17} \over 3}} \right)$$, then $$\alpha $$ is equal to______.
JEE Main 2020 (Online) 7th January Evening Slot
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12