1
JEE Main 2023 (Online) 13th April Morning Shift
+4
-1
Out of Syllabus

Among

(S1): $$\lim_\limits{n \rightarrow \infty} \frac{1}{n^{2}}(2+4+6+\ldots \ldots+2 n)=1$$

(S2) : $$\lim_\limits{n \rightarrow \infty} \frac{1}{n^{16}}\left(1^{15}+2^{15}+3^{15}+\ldots \ldots+n^{15}\right)=\frac{1}{16}$$

A
Only (S1) is true
B
Both (S1) and (S2) are true
C
Both (S1) and (S2) are false
D
Only (S2) is true
2
JEE Main 2023 (Online) 13th April Morning Shift
+4
-1

$$\int_\limits{0}^{\infty} \frac{6}{e^{3 x}+6 e^{2 x}+11 e^{x}+6} d x=$$

A
$$\log _{e}\left(\frac{256}{81}\right)$$
B
$$\log _{e}\left(\frac{64}{27}\right)$$
C
$$\log _{e}\left(\frac{32}{27}\right)$$
D
$$\log _{e}\left(\frac{512}{81}\right)$$
3
JEE Main 2023 (Online) 11th April Evening Shift
+4
-1

If $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a continuous function satisfying $$\int_\limits{0}^{\frac{\pi}{2}} f(\sin 2 x) \sin x d x+\alpha \int_\limits{0}^{\frac{\pi}{4}} f(\cos 2 x) \cos x d x=0$$, then the value of $$\alpha$$ is :

A
$$-\sqrt{3}$$
B
$$\sqrt{2}$$
C
$$-\sqrt{2}$$
D
$$\sqrt{3}$$
4
JEE Main 2023 (Online) 11th April Evening Shift
+4
-1

Let the function $$f:[0,2] \rightarrow \mathbb{R}$$ be defined as

$$f(x)= \begin{cases}e^{\min \left\{x^{2}, x-[x]\right\},} & x \in[0,1) \\ e^{\left[x-\log _{e} x\right]}, & x \in[1,2]\end{cases}$$

where $$[t]$$ denotes the greatest integer less than or equal to $$t$$. Then the value of the integral $$\int_\limits{0}^{2} x f(x) d x$$ is :

A
$$2 e-1$$
B
$$2 e-\frac{1}{2}$$
C
$$1+\frac{3 e}{2}$$
D
$$(e-1)\left(e^{2}+\frac{1}{2}\right)$$
EXAM MAP
Medical
NEET