1
JEE Main 2022 (Online) 28th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The minimum value of the twice differentiable function $$f(x)=\int\limits_{0}^{x} \mathrm{e}^{x-\mathrm{t}} f^{\prime}(\mathrm{t}) \mathrm{dt}-\left(x^{2}-x+1\right) \mathrm{e}^{x}$$, $$x \in \mathbf{R}$$, is :

A
$$-\frac{2}{\sqrt{\mathrm{e}}}$$
B
$$-2 \sqrt{\mathrm{e}}$$
C
$$-\sqrt{\mathrm{e}}$$
D
$$\frac{2}{\sqrt{\mathrm{e}}}$$
2
JEE Main 2022 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x)=2+|x|-|x-1|+|x+1|, x \in \mathbf{R}$$.

Consider

$$(\mathrm{S} 1): f^{\prime}\left(-\frac{3}{2}\right)+f^{\prime}\left(-\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{3}{2}\right)=2$$

$$(\mathrm{S} 2): \int\limits_{-2}^{2} f(x) \mathrm{d} x=12$$

Then,

A
both (S1) and (S2) are correct
B
both (S1) and (S2) are wrong
C
only (S1) is correct
D
only (S2) is correct
3
JEE Main 2022 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\int\limits_{0}^{2}\left(\left|2 x^{2}-3 x\right|+\left[x-\frac{1}{2}\right]\right) \mathrm{d} x$$, where [t] is the greatest integer function, is equal to :

A
$$\frac{7}{6}$$
B
$$\frac{19}{12}$$
C
$$\frac{31}{12}$$
D
$$\frac{3}{2}$$
4
JEE Main 2022 (Online) 27th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined as

$$f(x)=a \sin \left(\frac{\pi[x]}{2}\right)+[2-x], a \in \mathbb{R}$$ where $$[t]$$ is the greatest integer less than or equal to $$t$$. If $$\mathop {\lim }\limits_{x \to -1 } f(x)$$ exists, then the value of $$\int\limits_{0}^{4} f(x) d x$$ is equal to

A
$$-$$1
B
$$-$$2
C
1
D
2
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12