MCQ (Single Correct Answer)

1

The value of $ \cot^{-1} \left( \frac{\sqrt{1 + \tan^2(2)} - 1}{\tan(2)} \right) - \cot^{-1} \left( \frac{\sqrt{1 + \tan^2\left(\frac{1}{2}\right)} + 1}{\tan\left(\frac{1}{2}\right)} \right) $ is equal to

JEE Main 2025 (Online) 8th April Evening Shift
2

The sum of the infinite series $\cot ^{-1}\left(\frac{7}{4}\right)+\cot ^{-1}\left(\frac{19}{4}\right)+\cot ^{-1}\left(\frac{39}{4}\right)+\cot ^{-1}\left(\frac{67}{4}\right)+\ldots$. is :

JEE Main 2025 (Online) 4th April Evening Shift
3

Considering the principal values of the inverse trigonometric functions, $\sin ^{-1}\left(\frac{\sqrt{3}}{2} x+\frac{1}{2} \sqrt{1-x^2}\right),-\frac{1}{2}< x<\frac{1}{\sqrt{2}}$, is equal to

JEE Main 2025 (Online) 4th April Morning Shift
4

Let [x] denote the greatest integer less than or equal to x. Then the domain of $ f(x) = \sec^{-1}(2[x] + 1) $ is:

JEE Main 2025 (Online) 28th January Evening Shift
5

$\cos \left(\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{33}{65}\right)$ is equal to:

JEE Main 2025 (Online) 28th January Morning Shift
6

If $\alpha>\beta>\gamma>0$, then the expression $\cot ^{-1}\left\{\beta+\frac{\left(1+\beta^2\right)}{(\alpha-\beta)}\right\}+\cot ^{-1}\left\{\gamma+\frac{\left(1+\gamma^2\right)}{(\beta-\gamma)}\right\}+\cot ^{-1}\left\{\alpha+\frac{\left(1+\alpha^2\right)}{(\gamma-\alpha)}\right\}$ is equal to :

JEE Main 2025 (Online) 24th January Evening Shift
7

If $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{4}$, then $\cos ^{-1}\left(\frac{12}{13} \cos x+\frac{5}{13} \sin x\right)$ is equal to

JEE Main 2025 (Online) 23rd January Morning Shift
8

Using the principal values of the inverse trigonometric functions, the sum of the maximum and the minimum values of $16\left(\left(\sec ^{-1} x\right)^2+\left(\operatorname{cosec}^{-1} x\right)^2\right)$ is :

JEE Main 2025 (Online) 22nd January Morning Shift
9

Given that the inverse trigonometric function assumes principal values only. Let $$x, y$$ be any two real numbers in $$[-1,1]$$ such that $$\cos ^{-1} x-\sin ^{-1} y=\alpha, \frac{-\pi}{2} \leq \alpha \leq \pi$$. Then, the minimum value of $$x^2+y^2+2 x y \sin \alpha$$ is

JEE Main 2024 (Online) 4th April Evening Shift
10

If the domain of the function $$\sin ^{-1}\left(\frac{3 x-22}{2 x-19}\right)+\log _{\mathrm{e}}\left(\frac{3 x^2-8 x+5}{x^2-3 x-10}\right)$$ is $$(\alpha, \beta]$$, then $$3 \alpha+10 \beta$$ is equal to:

JEE Main 2024 (Online) 4th April Morning Shift
11

If $$a=\sin ^{-1}(\sin (5))$$ and $$b=\cos ^{-1}(\cos (5))$$, then $$a^2+b^2$$ is equal to

JEE Main 2024 (Online) 31st January Evening Shift
12

For $$\alpha, \beta, \gamma \neq 0$$, if $$\sin ^{-1} \alpha+\sin ^{-1} \beta+\sin ^{-1} \gamma=\pi$$ and $$(\alpha+\beta+\gamma)(\alpha-\gamma+\beta)=3 \alpha \beta$$, then $$\gamma$$ equals

JEE Main 2024 (Online) 31st January Morning Shift
13

Let $$x=\frac{m}{n}$$ ($$m, n$$ are co-prime natural numbers) be a solution of the equation $$\cos \left(2 \sin ^{-1} x\right)=\frac{1}{9}$$ and let $$\alpha, \beta(\alpha >\beta)$$ be the roots of the equation $$m x^2-n x-m+ n=0$$. Then the point $$(\alpha, \beta)$$ lies on the line

JEE Main 2024 (Online) 29th January Evening Shift
14

Considering only the principal values of inverse trigonometric functions, the number of positive real values of $$x$$ satisfying $$\tan ^{-1}(x)+\tan ^{-1}(2 x)=\frac{\pi}{4}$$ is :

JEE Main 2024 (Online) 27th January Evening Shift
15
If the domain of the function

$f(x)=\log _{e}\left(4 x^{2}+11 x+6\right)+\sin ^{-1}(4 x+3)+\cos ^{-1}\left(\frac{10 x+6}{3}\right)$ is $(\alpha, \beta]$, then

$36|\alpha+\beta|$ is equal to :
JEE Main 2023 (Online) 15th April Morning Shift
16

Let $$S = \left\{ {x \in R:0 < x < 1\,\mathrm{and}\,2{{\tan }^{ - 1}}\left( {{{1 - x} \over {1 + x}}} \right) = {{\cos }^{ - 1}}\left( {{{1 - {x^2}} \over {1 + {x^2}}}} \right)} \right\}$$.

If $$\mathrm{n(S)}$$ denotes the number of elements in $$\mathrm{S}$$ then :

JEE Main 2023 (Online) 1st February Evening Shift
17

Let $$S$$ be the set of all solutions of the equation $$\cos ^{-1}(2 x)-2 \cos ^{-1}\left(\sqrt{1-x^{2}}\right)=\pi, x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$$. Then $$\sum_\limits{x \in S} 2 \sin ^{-1}\left(x^{2}-1\right)$$ is equal to :

JEE Main 2023 (Online) 1st February Morning Shift
18
Let (a, b) $\subset(0,2 \pi)$ be the largest interval for which $\sin ^{-1}(\sin \theta)-\cos ^{-1}(\sin \theta)>0, \theta \in(0,2 \pi)$, holds.

If $\alpha x^{2}+\beta x+\sin ^{-1}\left(x^{2}-6 x+10\right)+\cos ^{-1}\left(x^{2}-6 x+10\right)=0$ and $\alpha-\beta=b-a$, then $\alpha$ is equal to :
JEE Main 2023 (Online) 31st January Evening Shift
19

If $${\sin ^{ - 1}}{\alpha \over {17}} + {\cos ^{ - 1}}{4 \over 5} - {\tan ^{ - 1}}{{77} \over {36}} = 0,0 < \alpha < 13$$, then $${\sin ^{ - 1}}(\sin \alpha ) + {\cos ^{ - 1}}(\cos \alpha )$$ is equal to :

JEE Main 2023 (Online) 31st January Morning Shift
20

$${\tan ^{ - 1}}\left( {{{1 + \sqrt 3 } \over {3 + \sqrt 3 }}} \right) + {\sec ^{ - 1}}\left( {\sqrt {{{8 + 4\sqrt 3 } \over {6 + 3\sqrt 3 }}} } \right)$$ is equal to :

JEE Main 2023 (Online) 24th January Morning Shift
21

The domain of the function $$f(x)=\sin ^{-1}\left(\frac{x^{2}-3 x+2}{x^{2}+2 x+7}\right)$$ is :

JEE Main 2022 (Online) 29th July Evening Shift
22

The sum of the absolute maximum and absolute minimum values of the function $$f(x)=\tan ^{-1}(\sin x-\cos x)$$ in the interval $$[0, \pi]$$ is :

JEE Main 2022 (Online) 28th July Evening Shift
23

Considering only the principal values of the inverse trigonometric functions, the domain of the function $$f(x)=\cos ^{-1}\left(\frac{x^{2}-4 x+2}{x^{2}+3}\right)$$ is :

JEE Main 2022 (Online) 28th July Morning Shift
24

Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation $$\cos ^{-1}(x)-2 \sin ^{-1}(x)=\cos ^{-1}(2 x)$$ is equal to :

JEE Main 2022 (Online) 28th July Morning Shift
25

The domain of the function $$f(x)=\sin ^{-1}\left[2 x^{2}-3\right]+\log _{2}\left(\log _{\frac{1}{2}}\left(x^{2}-5 x+5\right)\right)$$, where [t] is the greatest integer function, is :

JEE Main 2022 (Online) 27th July Evening Shift
26

If $$0 < x < {1 \over {\sqrt 2 }}$$ and $${{{{\sin }^{ - 1}}x} \over \alpha } = {{{{\cos }^{ - 1}}x} \over \beta }$$, then the value of $$\sin \left( {{{2\pi \alpha } \over {\alpha + \beta }}} \right)$$ is :

JEE Main 2022 (Online) 26th July Evening Shift
27

$$\tan \left(2 \tan ^{-1} \frac{1}{5}+\sec ^{-1} \frac{\sqrt{5}}{2}+2 \tan ^{-1} \frac{1}{8}\right)$$ is equal to :

JEE Main 2022 (Online) 26th July Morning Shift
28

Let m and M respectively be the minimum and the maximum values of $$f(x) = {\sin ^{ - 1}}2x + \sin 2x + {\cos ^{ - 1}}2x + \cos 2x,\,x \in \left[ {0,{\pi \over 8}} \right]$$. Then m + M is equal to :

JEE Main 2022 (Online) 30th June Morning Shift
29

Let $$\alpha = \tan \left( {{{5\pi } \over {16}}\sin \left( {2{{\cos }^{ - 1}}\left( {{1 \over {\sqrt 5 }}} \right)} \right)} \right)$$ and $$\beta = \cos \left( {{{\sin }^{ - 1}}\left( {{4 \over 5}} \right) + {{\sec }^{ - 1}}\left( {{5 \over 3}} \right)} \right)$$ where the inverse trigonometric functions take principal values. Then, the equation whose roots are $$\alpha$$ and $$\beta$$ is :

JEE Main 2022 (Online) 30th June Morning Shift
30

The domain of the function $${\cos ^{ - 1}}\left( {{{2{{\sin }^{ - 1}}\left( {{1 \over {4{x^2} - 1}}} \right)} \over \pi }} \right)$$ is :

JEE Main 2022 (Online) 29th June Morning Shift
31

The value of $$\cot \left( {\sum\limits_{n = 1}^{50} {{{\tan }^{ - 1}}\left( {{1 \over {1 + n + {n^2}}}} \right)} } \right)$$ is :

JEE Main 2022 (Online) 27th June Evening Shift
32

$${\sin ^1}\left( {\sin {{2\pi } \over 3}} \right) + {\cos ^{ - 1}}\left( {\cos {{7\pi } \over 6}} \right) + {\tan ^{ - 1}}\left( {\tan {{3\pi } \over 4}} \right)$$ is equal to :

JEE Main 2022 (Online) 27th June Morning Shift
33

If the inverse trigonometric functions take principal values then

$${\cos ^{ - 1}}\left( {{3 \over {10}}\cos \left( {{{\tan }^{ - 1}}\left( {{4 \over 3}} \right)} \right) + {2 \over 5}\sin \left( {{{\tan }^{ - 1}}\left( {{4 \over 3}} \right)} \right)} \right)$$ is equal to :

JEE Main 2022 (Online) 26th June Evening Shift
34

The value of $${\tan ^{ - 1}}\left( {{{\cos \left( {{{15\pi } \over 4}} \right) - 1} \over {\sin \left( {{\pi \over 4}} \right)}}} \right)$$ is equal to :

JEE Main 2022 (Online) 25th June Evening Shift
35

Let $$x * y = {x^2} + {y^3}$$ and $$(x * 1) * 1 = x * (1 * 1)$$.

Then a value of $$2{\sin ^{ - 1}}\left( {{{{x^4} + {x^2} - 2} \over {{x^4} + {x^2} + 2}}} \right)$$ is :

JEE Main 2022 (Online) 24th June Evening Shift
36

The set of all values of k for which

$${({\tan ^{ - 1}}x)^3} + {({\cot ^{ - 1}}x)^3} = k{\pi ^3},\,x \in R$$, is the interval :

JEE Main 2022 (Online) 24th June Morning Shift
37

The domain of the function

$$f(x) = {{{{\cos }^{ - 1}}\left( {{{{x^2} - 5x + 6} \over {{x^2} - 9}}} \right)} \over {{{\log }_e}({x^2} - 3x + 2)}}$$ is :

JEE Main 2022 (Online) 24th June Morning Shift
38
$${\cos ^{ - 1}}(\cos ( - 5)) + {\sin ^{ - 1}}(\sin (6)) - {\tan ^{ - 1}}(\tan (12))$$ is equal to :

(The inverse trigonometric functions take the principal values)
JEE Main 2021 (Online) 1st September Evening Shift
39
The domain of the function

$$f(x) = {\sin ^{ - 1}}\left( {{{3{x^2} + x - 1} \over {{{(x - 1)}^2}}}} \right) + {\cos ^{ - 1}}\left( {{{x - 1} \over {x + 1}}} \right)$$ is :
JEE Main 2021 (Online) 31st August Evening Shift
40
Let M and m respectively be the maximum and minimum values of the function
f(x) = tan$$-$$1 (sin x + cos x) in $$\left[ {0,{\pi \over 2}} \right]$$, then the value of tan(M $$-$$ m) is equal to :
JEE Main 2021 (Online) 27th August Evening Shift
41
If $${({\sin ^{ - 1}}x)^2} - {({\cos ^{ - 1}}x)^2} = a$$; 0 < x < 1, a $$\ne$$ 0, then the value of 2x2 $$-$$ 1 is :
JEE Main 2021 (Online) 27th August Morning Shift
42
The domain of the function $${{\mathop{\rm cosec}\nolimits} ^{ - 1}}\left( {{{1 + x} \over x}} \right)$$ is :
JEE Main 2021 (Online) 26th August Evening Shift
43
If $$\sum\limits_{r = 1}^{50} {{{\tan }^{ - 1}}{1 \over {2{r^2}}} = p} $$, then the value of tan p is :
JEE Main 2021 (Online) 26th August Evening Shift
44
If the domain of the function $$f(x) = {{{{\cos }^{ - 1}}\sqrt {{x^2} - x + 1} } \over {\sqrt {{{\sin }^{ - 1}}\left( {{{2x - 1} \over 2}} \right)} }}$$ is the interval ($$\alpha$$, $$\beta$$], then $$\alpha$$ + $$\beta$$ is equal to :
JEE Main 2021 (Online) 22th July Evening Shift
45
The value of $$\tan \left( {2{{\tan }^{ - 1}}\left( {{3 \over 5}} \right) + {{\sin }^{ - 1}}\left( {{5 \over {13}}} \right)} \right)$$ is equal to :
JEE Main 2021 (Online) 20th July Evening Shift
46
The number of real roots of the equation $${\tan ^{ - 1}}\sqrt {x(x + 1)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = {\pi \over 4}$$ is :
JEE Main 2021 (Online) 20th July Morning Shift
47
The number of solutions of the equation

$${\sin ^{ - 1}}\left[ {{x^2} + {1 \over 3}} \right] + {\cos ^{ - 1}}\left[ {{x^2} - {2 \over 3}} \right] = {x^2}$$, for x$$\in$$[$$-$$1, 1], and [x] denotes the greatest integer less than or equal to x, is :
JEE Main 2021 (Online) 17th March Evening Shift
48
The sum of possible values of x for

tan$$-$$1(x + 1) + cot$$-$$1$$\left( {{1 \over {x - 1}}} \right)$$ = tan$$-$$1$$\left( {{8 \over {31}}} \right)$$ is :
JEE Main 2021 (Online) 17th March Morning Shift
49
If cot$$-$$1($$\alpha$$) = cot$$-$$1 2 + cot$$-$$1 8 + cot$$-$$1 18 + cot$$-$$1 32 + ...... upto 100 terms, then $$\alpha$$ is :
JEE Main 2021 (Online) 17th March Morning Shift
50
Given that the inverse trigonometric functions take principal values only. Then, the number of real values of x which satisfy

$${\sin ^{ - 1}}\left( {{{3x} \over 5}} \right) + {\sin ^{ - 1}}\left( {{{4x} \over 5}} \right) = {\sin ^{ - 1}}x$$ is equal to :
JEE Main 2021 (Online) 16th March Evening Shift
51
If 0 < a, b < 1, and tan$$-$$1a + tan$$-$$1b = $${\pi \over 4}$$, then the value of

$$(a + b) - \left( {{{{a^2} + {b^2}} \over 2}} \right) + \left( {{{{a^3} + {b^3}} \over 3}} \right) - \left( {{{{a^4} + {b^4}} \over 4}} \right) + .....$$ is :
JEE Main 2021 (Online) 26th February Evening Shift
52
If $${{{{\sin }^1}x} \over a} = {{{{\cos }^{ - 1}}x} \over b} = {{{{\tan }^{ - 1}}y} \over c}$$; $$0 < x < 1$$,
then the value of $$\cos \left( {{{\pi c} \over {a + b}}} \right)$$ is :
JEE Main 2021 (Online) 26th February Morning Shift
53
cosec$$\left[ {2{{\cot }^{ - 1}}(5) + {{\cos }^{ - 1}}\left( {{4 \over 5}} \right)} \right]$$ is equal to :
JEE Main 2021 (Online) 25th February Evening Shift
54
A possible value of $$\tan \left( {{1 \over 4}{{\sin }^{ - 1}}{{\sqrt {63} } \over 8}} \right)$$ is :
JEE Main 2021 (Online) 24th February Evening Shift
55
If S is the sum of the first 10 terms of the series

$${\tan ^{ - 1}}\left( {{1 \over 3}} \right) + {\tan ^{ - 1}}\left( {{1 \over 7}} \right) + {\tan ^{ - 1}}\left( {{1 \over {13}}} \right) + {\tan ^{ - 1}}\left( {{1 \over {21}}} \right) + ....$$

then tan(S) is equal to :
JEE Main 2020 (Online) 5th September Morning Slot
56
2$$\pi $$ - $$\left( {{{\sin }^{ - 1}}{4 \over 5} + {{\sin }^{ - 1}}{5 \over {13}} + {{\sin }^{ - 1}}{{16} \over {65}}} \right)$$ is equal to :
JEE Main 2020 (Online) 3rd September Morning Slot
57
The domain of the function
f(x) = $${\sin ^{ - 1}}\left( {{{\left| x \right| + 5} \over {{x^2} + 1}}} \right)$$ is (– $$\infty $$, -a]$$ \cup $$[a, $$\infty $$). Then a is equal to :
JEE Main 2020 (Online) 2nd September Morning Slot
58
The value of $${\sin ^{ - 1}}\left( {{{12} \over {13}}} \right) - {\sin ^{ - 1}}\left( {{3 \over 5}} \right)$$ is equal to :
JEE Main 2019 (Online) 12th April Morning Slot
59
If $${\cos ^{ - 1}}x - {\cos ^{ - 1}}{y \over 2} = \alpha $$,where –1 $$ \le $$ x $$ \le $$ 1, – 2 $$ \le $$ y $$ \le $$ 2, x $$ \le $$ $${y \over 2}$$ , then for all x, y, 4x2 – 4xy cos $$\alpha $$ + y2 is equal to :
JEE Main 2019 (Online) 10th April Evening Slot
60
If $$\alpha = {\cos ^{ - 1}}\left( {{3 \over 5}} \right)$$, $$\beta = {\tan ^{ - 1}}\left( {{1 \over 3}} \right)$$ where $$0 < \alpha ,\beta < {\pi \over 2}$$ , then $$\alpha $$ - $$\beta $$ is equal to :
JEE Main 2019 (Online) 8th April Morning Slot
61
Considering only the principal values of inverse functions, the set
A = { x $$ \ge $$ 0: tan$$-$$1(2x) + tan$$-$$1(3x) = $${\pi \over 4}$$}
JEE Main 2019 (Online) 12th January Morning Slot
62
All x satisfying the inequality (cot–1 x)2– 7(cot–1 x) + 10 > 0, lie in the interval :
JEE Main 2019 (Online) 11th January Evening Slot
63
The value of $$\cot \left( {\sum\limits_{n = 1}^{19} {{{\cot }^{ - 1}}} \left( {1 + \sum\limits_{p = 1}^n {2p} } \right)} \right)$$ is :
JEE Main 2019 (Online) 10th January Evening Slot
64
If  x = sin$$-$$1(sin10) and y = cos$$-$$1(cos10), then y $$-$$ x is equal to :
JEE Main 2019 (Online) 9th January Evening Slot
65
If $${\cos ^{ - 1}}\left( {{2 \over {3x}}} \right) + {\cos ^{ - 1}}\left( {{3 \over {4x}}} \right) = {\pi \over 2}$$ (x > $$3 \over 4$$), then x is equal to :
JEE Main 2019 (Online) 9th January Morning Slot
66
A value of x satisfying the equation sin[cot−1 (1+ x)] = cos [tan−1 x], is :
JEE Main 2017 (Online) 9th April Morning Slot
67
The value of tan-1 $$\left[ {{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} } \over {\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right],$$ $$\left| x \right| < {1 \over 2},x \ne 0,$$ is equal to :
JEE Main 2017 (Online) 8th April Morning Slot
68
Let $${\tan ^{ - 1}}y = {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {{{2x} \over {1 - {x^2}}}} \right),$$
where $$\left| x \right| < {1 \over {\sqrt 3 }}.$$ Then a value of $$y$$ is :
JEE Main 2015 (Offline)
69
If $$x, y, z$$ are in A.P. and $${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$$ and $${\tan ^{ - 1}}z$$ are also in A.P., then :
JEE Main 2013 (Offline)
70
The value of $$cot\left( {\cos e{c^{ - 1}}{5 \over 3} + {{\tan }^{ - 1}}{2 \over 3}} \right)$$ is :
AIEEE 2008
71
If sin-1$$\left( {{x \over 5}} \right)$$ + cosec-1$$\left( {{5 \over 4}} \right)$$ = $${\pi \over 2}$$, then the value of x is :
AIEEE 2007
72
If $${\cos ^{ - 1}}x - {\cos ^{ - 1}}{y \over 2} = \alpha ,$$ then $$4{x^2} - 4xy\cos \alpha + {y^2}$$ is equal to :
AIEEE 2005
73
The trigonometric equation $${\sin ^{ - 1}}x = 2{\sin ^{ - 1}}a$$ has a solution for :
AIEEE 2003
74
$${\cot ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) - {\tan ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) = x,$$ then sin x is equal to :
AIEEE 2002

Numerical

1

$$ \text { If } y=\cos \left(\frac{\pi}{3}+\cos ^{-1} \frac{x}{2}\right) \text {, then }(x-y)^2+3 y^2 \text { is equal to } $$

JEE Main 2025 (Online) 2nd April Evening Shift
2

Let S = $ \left\{ x : \cos^{-1} x = \pi + \sin^{-1} x + \sin^{-1} [2x + 1] \right\} $. Then $ \sum\limits_{x \in S} (2x - 1)^2 $ is equal to _______.

JEE Main 2025 (Online) 29th January Morning Shift
3

If for some $\alpha, \beta ; \alpha \leq \beta, \alpha+\beta=8$ and $\sec ^2\left(\tan ^{-1} \alpha\right)+\operatorname{cosec}^2\left(\cot ^{-1} \beta\right)=36$, then $\alpha^2+\beta$ is __________

JEE Main 2025 (Online) 24th January Morning Shift
4

Let the inverse trigonometric functions take principal values. The number of real solutions of the equation $$2 \sin ^{-1} x+3 \cos ^{-1} x=\frac{2 \pi}{5}$$, is __________.

JEE Main 2024 (Online) 9th April Evening Shift
5

For $$n \in \mathrm{N}$$, if $$\cot ^{-1} 3+\cot ^{-1} 4+\cot ^{-1} 5+\cot ^{-1} n=\frac{\pi}{4}$$, then $$n$$ is equal to ________.

JEE Main 2024 (Online) 6th April Morning Shift
6

For $$x \in(-1,1]$$, the number of solutions of the equation $$\sin ^{-1} x=2 \tan ^{-1} x$$ is equal to __________.

JEE Main 2023 (Online) 13th April Evening Shift
7

If $$S=\left\{x \in \mathbb{R}: \sin ^{-1}\left(\frac{x+1}{\sqrt{x^{2}+2 x+2}}\right)-\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)=\frac{\pi}{4}\right\}$$, then $$\sum_\limits{x \in s}\left(\sin \left(\left(x^{2}+x+5\right) \frac{\pi}{2}\right)-\cos \left(\left(x^{2}+x+5\right) \pi\right)\right)$$ is equal to ____________.

JEE Main 2023 (Online) 13th April Morning Shift
8

If the domain of the function $$f(x)=\sec ^{-1}\left(\frac{2 x}{5 x+3}\right)$$ is $$[\alpha, \beta) \mathrm{U}(\gamma, \delta]$$, then $$|3 \alpha+10(\beta+\gamma)+21 \delta|$$ is equal to _________.

JEE Main 2023 (Online) 10th April Evening Shift
9

If the sum of all the solutions of $${\tan ^{ - 1}}\left( {{{2x} \over {1 - {x^2}}}} \right) + {\cot ^{ - 1}}\left( {{{1 - {x^2}} \over {2x}}} \right) = {\pi \over 3}, - 1 < x < 1,x \ne 0$$, is $$\alpha - {4 \over {\sqrt 3 }}$$, then $$\alpha$$ is equal to _____________.

JEE Main 2023 (Online) 25th January Morning Shift
10

For $$k \in \mathbb{R}$$, let the solutions of the equation $$\cos \left(\sin ^{-1}\left(x \cot \left(\tan ^{-1}\left(\cos \left(\sin ^{-1} x\right)\right)\right)\right)\right)=k, 0<|x|<\frac{1}{\sqrt{2}}$$ be $$\alpha$$ and $$\beta$$, where the inverse trigonometric functions take only principal values. If the solutions of the equation $$x^{2}-b x-5=0$$ are $$\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$$ and $$\frac{\alpha}{\beta}$$, then $$\frac{b}{k^{2}}$$ is equal to ____________.

JEE Main 2022 (Online) 27th July Morning Shift
11

Let $$x = \sin (2{\tan ^{ - 1}}\alpha )$$ and $$y = \sin \left( {{1 \over 2}{{\tan }^{ - 1}}{4 \over 3}} \right)$$. If $$S = \{ a \in R:{y^2} = 1 - x\} $$, then $$\sum\limits_{\alpha \in S}^{} {16{\alpha ^3}} $$ is equal to _______________.

JEE Main 2022 (Online) 25th July Evening Shift
12

$$50\tan \left( {3{{\tan }^{ - 1}}\left( {{1 \over 2}} \right) + 2{{\cos }^{ - 1}}\left( {{1 \over {\sqrt 5 }}} \right)} \right) + 4\sqrt 2 \tan \left( {{1 \over 2}{{\tan }^{ - 1}}(2\sqrt 2 )} \right)$$ is equal to ____________.

JEE Main 2022 (Online) 29th June Morning Shift

MCQ (More than One Correct Answer)

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12