Inverse Trigonometric Functions · Mathematics · JEE Main
Numerical
Let S = $ \left\{ x : \cos^{-1} x = \pi + \sin^{-1} x + \sin^{-1} [2x + 1] \right\} $. Then $ \sum\limits_{x \in S} (2x - 1)^2 $ is equal to _______.
If for some $\alpha, \beta ; \alpha \leq \beta, \alpha+\beta=8$ and $\sec ^2\left(\tan ^{-1} \alpha\right)+\operatorname{cosec}^2\left(\cot ^{-1} \beta\right)=36$, then $\alpha^2+\beta$ is __________
Let the inverse trigonometric functions take principal values. The number of real solutions of the equation $$2 \sin ^{-1} x+3 \cos ^{-1} x=\frac{2 \pi}{5}$$, is __________.
For $$n \in \mathrm{N}$$, if $$\cot ^{-1} 3+\cot ^{-1} 4+\cot ^{-1} 5+\cot ^{-1} n=\frac{\pi}{4}$$, then $$n$$ is equal to ________.
For $$x \in(-1,1]$$, the number of solutions of the equation $$\sin ^{-1} x=2 \tan ^{-1} x$$ is equal to __________.
If $$S=\left\{x \in \mathbb{R}: \sin ^{-1}\left(\frac{x+1}{\sqrt{x^{2}+2 x+2}}\right)-\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)=\frac{\pi}{4}\right\}$$, then $$\sum_\limits{x \in s}\left(\sin \left(\left(x^{2}+x+5\right) \frac{\pi}{2}\right)-\cos \left(\left(x^{2}+x+5\right) \pi\right)\right)$$ is equal to ____________.
If the domain of the function $$f(x)=\sec ^{-1}\left(\frac{2 x}{5 x+3}\right)$$ is $$[\alpha, \beta) \mathrm{U}(\gamma, \delta]$$, then $$|3 \alpha+10(\beta+\gamma)+21 \delta|$$ is equal to _________.
If the sum of all the solutions of $${\tan ^{ - 1}}\left( {{{2x} \over {1 - {x^2}}}} \right) + {\cot ^{ - 1}}\left( {{{1 - {x^2}} \over {2x}}} \right) = {\pi \over 3}, - 1 < x < 1,x \ne 0$$, is $$\alpha - {4 \over {\sqrt 3 }}$$, then $$\alpha$$ is equal to _____________.
For $$k \in \mathbb{R}$$, let the solutions of the equation $$\cos \left(\sin ^{-1}\left(x \cot \left(\tan ^{-1}\left(\cos \left(\sin ^{-1} x\right)\right)\right)\right)\right)=k, 0<|x|<\frac{1}{\sqrt{2}}$$ be $$\alpha$$ and $$\beta$$, where the inverse trigonometric functions take only principal values. If the solutions of the equation $$x^{2}-b x-5=0$$ are $$\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$$ and $$\frac{\alpha}{\beta}$$, then $$\frac{b}{k^{2}}$$ is equal to ____________.
Let $$x = \sin (2{\tan ^{ - 1}}\alpha )$$ and $$y = \sin \left( {{1 \over 2}{{\tan }^{ - 1}}{4 \over 3}} \right)$$. If $$S = \{ a \in R:{y^2} = 1 - x\} $$, then $$\sum\limits_{\alpha \in S}^{} {16{\alpha ^3}} $$ is equal to _______________.
$$50\tan \left( {3{{\tan }^{ - 1}}\left( {{1 \over 2}} \right) + 2{{\cos }^{ - 1}}\left( {{1 \over {\sqrt 5 }}} \right)} \right) + 4\sqrt 2 \tan \left( {{1 \over 2}{{\tan }^{ - 1}}(2\sqrt 2 )} \right)$$ is equal to ____________.
MCQ (Single Correct Answer)
Let [x] denote the greatest integer less than or equal to x. Then the domain of $ f(x) = \sec^{-1}(2[x] + 1) $ is:
$\cos \left(\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{33}{65}\right)$ is equal to:
If $\alpha>\beta>\gamma>0$, then the expression $\cot ^{-1}\left\{\beta+\frac{\left(1+\beta^2\right)}{(\alpha-\beta)}\right\}+\cot ^{-1}\left\{\gamma+\frac{\left(1+\gamma^2\right)}{(\beta-\gamma)}\right\}+\cot ^{-1}\left\{\alpha+\frac{\left(1+\alpha^2\right)}{(\gamma-\alpha)}\right\}$ is equal to :
If $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{4}$, then $\cos ^{-1}\left(\frac{12}{13} \cos x+\frac{5}{13} \sin x\right)$ is equal to
Using the principal values of the inverse trigonometric functions, the sum of the maximum and the minimum values of $16\left(\left(\sec ^{-1} x\right)^2+\left(\operatorname{cosec}^{-1} x\right)^2\right)$ is :
Given that the inverse trigonometric function assumes principal values only. Let $$x, y$$ be any two real numbers in $$[-1,1]$$ such that $$\cos ^{-1} x-\sin ^{-1} y=\alpha, \frac{-\pi}{2} \leq \alpha \leq \pi$$. Then, the minimum value of $$x^2+y^2+2 x y \sin \alpha$$ is
If the domain of the function $$\sin ^{-1}\left(\frac{3 x-22}{2 x-19}\right)+\log _{\mathrm{e}}\left(\frac{3 x^2-8 x+5}{x^2-3 x-10}\right)$$ is $$(\alpha, \beta]$$, then $$3 \alpha+10 \beta$$ is equal to:
If $$a=\sin ^{-1}(\sin (5))$$ and $$b=\cos ^{-1}(\cos (5))$$, then $$a^2+b^2$$ is equal to
For $$\alpha, \beta, \gamma \neq 0$$, if $$\sin ^{-1} \alpha+\sin ^{-1} \beta+\sin ^{-1} \gamma=\pi$$ and $$(\alpha+\beta+\gamma)(\alpha-\gamma+\beta)=3 \alpha \beta$$, then $$\gamma$$ equals
Let $$x=\frac{m}{n}$$ ($$m, n$$ are co-prime natural numbers) be a solution of the equation $$\cos \left(2 \sin ^{-1} x\right)=\frac{1}{9}$$ and let $$\alpha, \beta(\alpha >\beta)$$ be the roots of the equation $$m x^2-n x-m+ n=0$$. Then the point $$(\alpha, \beta)$$ lies on the line
Considering only the principal values of inverse trigonometric functions, the number of positive real values of $$x$$ satisfying $$\tan ^{-1}(x)+\tan ^{-1}(2 x)=\frac{\pi}{4}$$ is :
$f(x)=\log _{e}\left(4 x^{2}+11 x+6\right)+\sin ^{-1}(4 x+3)+\cos ^{-1}\left(\frac{10 x+6}{3}\right)$ is $(\alpha, \beta]$, then
$36|\alpha+\beta|$ is equal to :
Let $$S = \left\{ {x \in R:0 < x < 1\,\mathrm{and}\,2{{\tan }^{ - 1}}\left( {{{1 - x} \over {1 + x}}} \right) = {{\cos }^{ - 1}}\left( {{{1 - {x^2}} \over {1 + {x^2}}}} \right)} \right\}$$.
If $$\mathrm{n(S)}$$ denotes the number of elements in $$\mathrm{S}$$ then :
Let $$S$$ be the set of all solutions of the equation $$\cos ^{-1}(2 x)-2 \cos ^{-1}\left(\sqrt{1-x^{2}}\right)=\pi, x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$$. Then $$\sum_\limits{x \in S} 2 \sin ^{-1}\left(x^{2}-1\right)$$ is equal to :
If $\alpha x^{2}+\beta x+\sin ^{-1}\left(x^{2}-6 x+10\right)+\cos ^{-1}\left(x^{2}-6 x+10\right)=0$ and $\alpha-\beta=b-a$, then $\alpha$ is equal to :
If $${\sin ^{ - 1}}{\alpha \over {17}} + {\cos ^{ - 1}}{4 \over 5} - {\tan ^{ - 1}}{{77} \over {36}} = 0,0 < \alpha < 13$$, then $${\sin ^{ - 1}}(\sin \alpha ) + {\cos ^{ - 1}}(\cos \alpha )$$ is equal to :
$${\tan ^{ - 1}}\left( {{{1 + \sqrt 3 } \over {3 + \sqrt 3 }}} \right) + {\sec ^{ - 1}}\left( {\sqrt {{{8 + 4\sqrt 3 } \over {6 + 3\sqrt 3 }}} } \right)$$ is equal to :
The domain of the function $$f(x)=\sin ^{-1}\left(\frac{x^{2}-3 x+2}{x^{2}+2 x+7}\right)$$ is :
The sum of the absolute maximum and absolute minimum values of the function $$f(x)=\tan ^{-1}(\sin x-\cos x)$$ in the interval $$[0, \pi]$$ is :
Considering only the principal values of the inverse trigonometric functions, the domain of the function $$f(x)=\cos ^{-1}\left(\frac{x^{2}-4 x+2}{x^{2}+3}\right)$$ is :
Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation $$\cos ^{-1}(x)-2 \sin ^{-1}(x)=\cos ^{-1}(2 x)$$ is equal to :
The domain of the function $$f(x)=\sin ^{-1}\left[2 x^{2}-3\right]+\log _{2}\left(\log _{\frac{1}{2}}\left(x^{2}-5 x+5\right)\right)$$, where [t] is the greatest integer function, is :
If $$0 < x < {1 \over {\sqrt 2 }}$$ and $${{{{\sin }^{ - 1}}x} \over \alpha } = {{{{\cos }^{ - 1}}x} \over \beta }$$, then the value of $$\sin \left( {{{2\pi \alpha } \over {\alpha + \beta }}} \right)$$ is :
$$\tan \left(2 \tan ^{-1} \frac{1}{5}+\sec ^{-1} \frac{\sqrt{5}}{2}+2 \tan ^{-1} \frac{1}{8}\right)$$ is equal to :
Let m and M respectively be the minimum and the maximum values of $$f(x) = {\sin ^{ - 1}}2x + \sin 2x + {\cos ^{ - 1}}2x + \cos 2x,\,x \in \left[ {0,{\pi \over 8}} \right]$$. Then m + M is equal to :
Let $$\alpha = \tan \left( {{{5\pi } \over {16}}\sin \left( {2{{\cos }^{ - 1}}\left( {{1 \over {\sqrt 5 }}} \right)} \right)} \right)$$ and $$\beta = \cos \left( {{{\sin }^{ - 1}}\left( {{4 \over 5}} \right) + {{\sec }^{ - 1}}\left( {{5 \over 3}} \right)} \right)$$ where the inverse trigonometric functions take principal values. Then, the equation whose roots are $$\alpha$$ and $$\beta$$ is :
The domain of the function $${\cos ^{ - 1}}\left( {{{2{{\sin }^{ - 1}}\left( {{1 \over {4{x^2} - 1}}} \right)} \over \pi }} \right)$$ is :
The value of $$\cot \left( {\sum\limits_{n = 1}^{50} {{{\tan }^{ - 1}}\left( {{1 \over {1 + n + {n^2}}}} \right)} } \right)$$ is :
$${\sin ^1}\left( {\sin {{2\pi } \over 3}} \right) + {\cos ^{ - 1}}\left( {\cos {{7\pi } \over 6}} \right) + {\tan ^{ - 1}}\left( {\tan {{3\pi } \over 4}} \right)$$ is equal to :
If the inverse trigonometric functions take principal values then
$${\cos ^{ - 1}}\left( {{3 \over {10}}\cos \left( {{{\tan }^{ - 1}}\left( {{4 \over 3}} \right)} \right) + {2 \over 5}\sin \left( {{{\tan }^{ - 1}}\left( {{4 \over 3}} \right)} \right)} \right)$$ is equal to :
The value of $${\tan ^{ - 1}}\left( {{{\cos \left( {{{15\pi } \over 4}} \right) - 1} \over {\sin \left( {{\pi \over 4}} \right)}}} \right)$$ is equal to :
Let $$x * y = {x^2} + {y^3}$$ and $$(x * 1) * 1 = x * (1 * 1)$$.
Then a value of $$2{\sin ^{ - 1}}\left( {{{{x^4} + {x^2} - 2} \over {{x^4} + {x^2} + 2}}} \right)$$ is :
The set of all values of k for which
$${({\tan ^{ - 1}}x)^3} + {({\cot ^{ - 1}}x)^3} = k{\pi ^3},\,x \in R$$, is the interval :
The domain of the function
$$f(x) = {{{{\cos }^{ - 1}}\left( {{{{x^2} - 5x + 6} \over {{x^2} - 9}}} \right)} \over {{{\log }_e}({x^2} - 3x + 2)}}$$ is :
(The inverse trigonometric functions take the principal values)
$$f(x) = {\sin ^{ - 1}}\left( {{{3{x^2} + x - 1} \over {{{(x - 1)}^2}}}} \right) + {\cos ^{ - 1}}\left( {{{x - 1} \over {x + 1}}} \right)$$ is :
f(x) = tan$$-$$1 (sin x + cos x) in $$\left[ {0,{\pi \over 2}} \right]$$, then the value of tan(M $$-$$ m) is equal to :
$${\sin ^{ - 1}}\left[ {{x^2} + {1 \over 3}} \right] + {\cos ^{ - 1}}\left[ {{x^2} - {2 \over 3}} \right] = {x^2}$$, for x$$\in$$[$$-$$1, 1], and [x] denotes the greatest integer less than or equal to x, is :
tan$$-$$1(x + 1) + cot$$-$$1$$\left( {{1 \over {x - 1}}} \right)$$ = tan$$-$$1$$\left( {{8 \over {31}}} \right)$$ is :
$${\sin ^{ - 1}}\left( {{{3x} \over 5}} \right) + {\sin ^{ - 1}}\left( {{{4x} \over 5}} \right) = {\sin ^{ - 1}}x$$ is equal to :
$$(a + b) - \left( {{{{a^2} + {b^2}} \over 2}} \right) + \left( {{{{a^3} + {b^3}} \over 3}} \right) - \left( {{{{a^4} + {b^4}} \over 4}} \right) + .....$$ is :
then the value of $$\cos \left( {{{\pi c} \over {a + b}}} \right)$$ is :
$${\tan ^{ - 1}}\left( {{1 \over 3}} \right) + {\tan ^{ - 1}}\left( {{1 \over 7}} \right) + {\tan ^{ - 1}}\left( {{1 \over {13}}} \right) + {\tan ^{ - 1}}\left( {{1 \over {21}}} \right) + ....$$
then tan(S) is equal to :
f(x) = $${\sin ^{ - 1}}\left( {{{\left| x \right| + 5} \over {{x^2} + 1}}} \right)$$ is (– $$\infty $$, -a]$$ \cup $$[a, $$\infty $$). Then a is equal to :
A = { x $$ \ge $$ 0: tan$$-$$1(2x) + tan$$-$$1(3x) = $${\pi \over 4}$$}
where $$\left| x \right| < {1 \over {\sqrt 3 }}.$$ Then a value of $$y$$ is :