Numerical

1

Let S = $ \left\{ x : \cos^{-1} x = \pi + \sin^{-1} x + \sin^{-1} [2x + 1] \right\} $. Then $ \sum\limits_{x \in S} (2x - 1)^2 $ is equal to _______.

JEE Main 2025 (Online) 29th January Morning Shift
2

If for some $\alpha, \beta ; \alpha \leq \beta, \alpha+\beta=8$ and $\sec ^2\left(\tan ^{-1} \alpha\right)+\operatorname{cosec}^2\left(\cot ^{-1} \beta\right)=36$, then $\alpha^2+\beta$ is __________

JEE Main 2025 (Online) 24th January Morning Shift
3

Let the inverse trigonometric functions take principal values. The number of real solutions of the equation $$2 \sin ^{-1} x+3 \cos ^{-1} x=\frac{2 \pi}{5}$$, is __________.

JEE Main 2024 (Online) 9th April Evening Shift
4

For $$n \in \mathrm{N}$$, if $$\cot ^{-1} 3+\cot ^{-1} 4+\cot ^{-1} 5+\cot ^{-1} n=\frac{\pi}{4}$$, then $$n$$ is equal to ________.

JEE Main 2024 (Online) 6th April Morning Shift
5

For $$x \in(-1,1]$$, the number of solutions of the equation $$\sin ^{-1} x=2 \tan ^{-1} x$$ is equal to __________.

JEE Main 2023 (Online) 13th April Evening Shift
6

If $$S=\left\{x \in \mathbb{R}: \sin ^{-1}\left(\frac{x+1}{\sqrt{x^{2}+2 x+2}}\right)-\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)=\frac{\pi}{4}\right\}$$, then $$\sum_\limits{x \in s}\left(\sin \left(\left(x^{2}+x+5\right) \frac{\pi}{2}\right)-\cos \left(\left(x^{2}+x+5\right) \pi\right)\right)$$ is equal to ____________.

JEE Main 2023 (Online) 13th April Morning Shift
7

If the domain of the function $$f(x)=\sec ^{-1}\left(\frac{2 x}{5 x+3}\right)$$ is $$[\alpha, \beta) \mathrm{U}(\gamma, \delta]$$, then $$|3 \alpha+10(\beta+\gamma)+21 \delta|$$ is equal to _________.

JEE Main 2023 (Online) 10th April Evening Shift
8

If the sum of all the solutions of $${\tan ^{ - 1}}\left( {{{2x} \over {1 - {x^2}}}} \right) + {\cot ^{ - 1}}\left( {{{1 - {x^2}} \over {2x}}} \right) = {\pi \over 3}, - 1 < x < 1,x \ne 0$$, is $$\alpha - {4 \over {\sqrt 3 }}$$, then $$\alpha$$ is equal to _____________.

JEE Main 2023 (Online) 25th January Morning Shift
9

For $$k \in \mathbb{R}$$, let the solutions of the equation $$\cos \left(\sin ^{-1}\left(x \cot \left(\tan ^{-1}\left(\cos \left(\sin ^{-1} x\right)\right)\right)\right)\right)=k, 0<|x|<\frac{1}{\sqrt{2}}$$ be $$\alpha$$ and $$\beta$$, where the inverse trigonometric functions take only principal values. If the solutions of the equation $$x^{2}-b x-5=0$$ are $$\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$$ and $$\frac{\alpha}{\beta}$$, then $$\frac{b}{k^{2}}$$ is equal to ____________.

JEE Main 2022 (Online) 27th July Morning Shift
10

Let $$x = \sin (2{\tan ^{ - 1}}\alpha )$$ and $$y = \sin \left( {{1 \over 2}{{\tan }^{ - 1}}{4 \over 3}} \right)$$. If $$S = \{ a \in R:{y^2} = 1 - x\} $$, then $$\sum\limits_{\alpha \in S}^{} {16{\alpha ^3}} $$ is equal to _______________.

JEE Main 2022 (Online) 25th July Evening Shift
11

$$50\tan \left( {3{{\tan }^{ - 1}}\left( {{1 \over 2}} \right) + 2{{\cos }^{ - 1}}\left( {{1 \over {\sqrt 5 }}} \right)} \right) + 4\sqrt 2 \tan \left( {{1 \over 2}{{\tan }^{ - 1}}(2\sqrt 2 )} \right)$$ is equal to ____________.

JEE Main 2022 (Online) 29th June Morning Shift

MCQ (Single Correct Answer)

1

Let [x] denote the greatest integer less than or equal to x. Then the domain of $ f(x) = \sec^{-1}(2[x] + 1) $ is:

JEE Main 2025 (Online) 28th January Evening Shift
2

$\cos \left(\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{33}{65}\right)$ is equal to:

JEE Main 2025 (Online) 28th January Morning Shift
3

If $\alpha>\beta>\gamma>0$, then the expression $\cot ^{-1}\left\{\beta+\frac{\left(1+\beta^2\right)}{(\alpha-\beta)}\right\}+\cot ^{-1}\left\{\gamma+\frac{\left(1+\gamma^2\right)}{(\beta-\gamma)}\right\}+\cot ^{-1}\left\{\alpha+\frac{\left(1+\alpha^2\right)}{(\gamma-\alpha)}\right\}$ is equal to :

JEE Main 2025 (Online) 24th January Evening Shift
4

If $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{4}$, then $\cos ^{-1}\left(\frac{12}{13} \cos x+\frac{5}{13} \sin x\right)$ is equal to

JEE Main 2025 (Online) 23rd January Morning Shift
5

Using the principal values of the inverse trigonometric functions, the sum of the maximum and the minimum values of $16\left(\left(\sec ^{-1} x\right)^2+\left(\operatorname{cosec}^{-1} x\right)^2\right)$ is :

JEE Main 2025 (Online) 22nd January Morning Shift
6

Given that the inverse trigonometric function assumes principal values only. Let $$x, y$$ be any two real numbers in $$[-1,1]$$ such that $$\cos ^{-1} x-\sin ^{-1} y=\alpha, \frac{-\pi}{2} \leq \alpha \leq \pi$$. Then, the minimum value of $$x^2+y^2+2 x y \sin \alpha$$ is

JEE Main 2024 (Online) 4th April Evening Shift
7

If the domain of the function $$\sin ^{-1}\left(\frac{3 x-22}{2 x-19}\right)+\log _{\mathrm{e}}\left(\frac{3 x^2-8 x+5}{x^2-3 x-10}\right)$$ is $$(\alpha, \beta]$$, then $$3 \alpha+10 \beta$$ is equal to:

JEE Main 2024 (Online) 4th April Morning Shift
8

If $$a=\sin ^{-1}(\sin (5))$$ and $$b=\cos ^{-1}(\cos (5))$$, then $$a^2+b^2$$ is equal to

JEE Main 2024 (Online) 31st January Evening Shift
9

For $$\alpha, \beta, \gamma \neq 0$$, if $$\sin ^{-1} \alpha+\sin ^{-1} \beta+\sin ^{-1} \gamma=\pi$$ and $$(\alpha+\beta+\gamma)(\alpha-\gamma+\beta)=3 \alpha \beta$$, then $$\gamma$$ equals

JEE Main 2024 (Online) 31st January Morning Shift
10

Let $$x=\frac{m}{n}$$ ($$m, n$$ are co-prime natural numbers) be a solution of the equation $$\cos \left(2 \sin ^{-1} x\right)=\frac{1}{9}$$ and let $$\alpha, \beta(\alpha >\beta)$$ be the roots of the equation $$m x^2-n x-m+ n=0$$. Then the point $$(\alpha, \beta)$$ lies on the line

JEE Main 2024 (Online) 29th January Evening Shift
11

Considering only the principal values of inverse trigonometric functions, the number of positive real values of $$x$$ satisfying $$\tan ^{-1}(x)+\tan ^{-1}(2 x)=\frac{\pi}{4}$$ is :

JEE Main 2024 (Online) 27th January Evening Shift
12
If the domain of the function

$f(x)=\log _{e}\left(4 x^{2}+11 x+6\right)+\sin ^{-1}(4 x+3)+\cos ^{-1}\left(\frac{10 x+6}{3}\right)$ is $(\alpha, \beta]$, then

$36|\alpha+\beta|$ is equal to :
JEE Main 2023 (Online) 15th April Morning Shift
13

Let $$S = \left\{ {x \in R:0 < x < 1\,\mathrm{and}\,2{{\tan }^{ - 1}}\left( {{{1 - x} \over {1 + x}}} \right) = {{\cos }^{ - 1}}\left( {{{1 - {x^2}} \over {1 + {x^2}}}} \right)} \right\}$$.

If $$\mathrm{n(S)}$$ denotes the number of elements in $$\mathrm{S}$$ then :

JEE Main 2023 (Online) 1st February Evening Shift
14

Let $$S$$ be the set of all solutions of the equation $$\cos ^{-1}(2 x)-2 \cos ^{-1}\left(\sqrt{1-x^{2}}\right)=\pi, x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$$. Then $$\sum_\limits{x \in S} 2 \sin ^{-1}\left(x^{2}-1\right)$$ is equal to :

JEE Main 2023 (Online) 1st February Morning Shift
15
Let (a, b) $\subset(0,2 \pi)$ be the largest interval for which $\sin ^{-1}(\sin \theta)-\cos ^{-1}(\sin \theta)>0, \theta \in(0,2 \pi)$, holds.

If $\alpha x^{2}+\beta x+\sin ^{-1}\left(x^{2}-6 x+10\right)+\cos ^{-1}\left(x^{2}-6 x+10\right)=0$ and $\alpha-\beta=b-a$, then $\alpha$ is equal to :
JEE Main 2023 (Online) 31st January Evening Shift
16

If $${\sin ^{ - 1}}{\alpha \over {17}} + {\cos ^{ - 1}}{4 \over 5} - {\tan ^{ - 1}}{{77} \over {36}} = 0,0 < \alpha < 13$$, then $${\sin ^{ - 1}}(\sin \alpha ) + {\cos ^{ - 1}}(\cos \alpha )$$ is equal to :

JEE Main 2023 (Online) 31st January Morning Shift
17

$${\tan ^{ - 1}}\left( {{{1 + \sqrt 3 } \over {3 + \sqrt 3 }}} \right) + {\sec ^{ - 1}}\left( {\sqrt {{{8 + 4\sqrt 3 } \over {6 + 3\sqrt 3 }}} } \right)$$ is equal to :

JEE Main 2023 (Online) 24th January Morning Shift
18

The domain of the function $$f(x)=\sin ^{-1}\left(\frac{x^{2}-3 x+2}{x^{2}+2 x+7}\right)$$ is :

JEE Main 2022 (Online) 29th July Evening Shift
19

The sum of the absolute maximum and absolute minimum values of the function $$f(x)=\tan ^{-1}(\sin x-\cos x)$$ in the interval $$[0, \pi]$$ is :

JEE Main 2022 (Online) 28th July Evening Shift
20

Considering only the principal values of the inverse trigonometric functions, the domain of the function $$f(x)=\cos ^{-1}\left(\frac{x^{2}-4 x+2}{x^{2}+3}\right)$$ is :

JEE Main 2022 (Online) 28th July Morning Shift
21

Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation $$\cos ^{-1}(x)-2 \sin ^{-1}(x)=\cos ^{-1}(2 x)$$ is equal to :

JEE Main 2022 (Online) 28th July Morning Shift
22

The domain of the function $$f(x)=\sin ^{-1}\left[2 x^{2}-3\right]+\log _{2}\left(\log _{\frac{1}{2}}\left(x^{2}-5 x+5\right)\right)$$, where [t] is the greatest integer function, is :

JEE Main 2022 (Online) 27th July Evening Shift
23

If $$0 < x < {1 \over {\sqrt 2 }}$$ and $${{{{\sin }^{ - 1}}x} \over \alpha } = {{{{\cos }^{ - 1}}x} \over \beta }$$, then the value of $$\sin \left( {{{2\pi \alpha } \over {\alpha + \beta }}} \right)$$ is :

JEE Main 2022 (Online) 26th July Evening Shift
24

$$\tan \left(2 \tan ^{-1} \frac{1}{5}+\sec ^{-1} \frac{\sqrt{5}}{2}+2 \tan ^{-1} \frac{1}{8}\right)$$ is equal to :

JEE Main 2022 (Online) 26th July Morning Shift
25

Let m and M respectively be the minimum and the maximum values of $$f(x) = {\sin ^{ - 1}}2x + \sin 2x + {\cos ^{ - 1}}2x + \cos 2x,\,x \in \left[ {0,{\pi \over 8}} \right]$$. Then m + M is equal to :

JEE Main 2022 (Online) 30th June Morning Shift
26

Let $$\alpha = \tan \left( {{{5\pi } \over {16}}\sin \left( {2{{\cos }^{ - 1}}\left( {{1 \over {\sqrt 5 }}} \right)} \right)} \right)$$ and $$\beta = \cos \left( {{{\sin }^{ - 1}}\left( {{4 \over 5}} \right) + {{\sec }^{ - 1}}\left( {{5 \over 3}} \right)} \right)$$ where the inverse trigonometric functions take principal values. Then, the equation whose roots are $$\alpha$$ and $$\beta$$ is :

JEE Main 2022 (Online) 30th June Morning Shift
27

The domain of the function $${\cos ^{ - 1}}\left( {{{2{{\sin }^{ - 1}}\left( {{1 \over {4{x^2} - 1}}} \right)} \over \pi }} \right)$$ is :

JEE Main 2022 (Online) 29th June Morning Shift
28

The value of $$\cot \left( {\sum\limits_{n = 1}^{50} {{{\tan }^{ - 1}}\left( {{1 \over {1 + n + {n^2}}}} \right)} } \right)$$ is :

JEE Main 2022 (Online) 27th June Evening Shift
29

$${\sin ^1}\left( {\sin {{2\pi } \over 3}} \right) + {\cos ^{ - 1}}\left( {\cos {{7\pi } \over 6}} \right) + {\tan ^{ - 1}}\left( {\tan {{3\pi } \over 4}} \right)$$ is equal to :

JEE Main 2022 (Online) 27th June Morning Shift
30

If the inverse trigonometric functions take principal values then

$${\cos ^{ - 1}}\left( {{3 \over {10}}\cos \left( {{{\tan }^{ - 1}}\left( {{4 \over 3}} \right)} \right) + {2 \over 5}\sin \left( {{{\tan }^{ - 1}}\left( {{4 \over 3}} \right)} \right)} \right)$$ is equal to :

JEE Main 2022 (Online) 26th June Evening Shift
31

The value of $${\tan ^{ - 1}}\left( {{{\cos \left( {{{15\pi } \over 4}} \right) - 1} \over {\sin \left( {{\pi \over 4}} \right)}}} \right)$$ is equal to :

JEE Main 2022 (Online) 25th June Evening Shift
32

Let $$x * y = {x^2} + {y^3}$$ and $$(x * 1) * 1 = x * (1 * 1)$$.

Then a value of $$2{\sin ^{ - 1}}\left( {{{{x^4} + {x^2} - 2} \over {{x^4} + {x^2} + 2}}} \right)$$ is :

JEE Main 2022 (Online) 24th June Evening Shift
33

The set of all values of k for which

$${({\tan ^{ - 1}}x)^3} + {({\cot ^{ - 1}}x)^3} = k{\pi ^3},\,x \in R$$, is the interval :

JEE Main 2022 (Online) 24th June Morning Shift
34

The domain of the function

$$f(x) = {{{{\cos }^{ - 1}}\left( {{{{x^2} - 5x + 6} \over {{x^2} - 9}}} \right)} \over {{{\log }_e}({x^2} - 3x + 2)}}$$ is :

JEE Main 2022 (Online) 24th June Morning Shift
35
$${\cos ^{ - 1}}(\cos ( - 5)) + {\sin ^{ - 1}}(\sin (6)) - {\tan ^{ - 1}}(\tan (12))$$ is equal to :

(The inverse trigonometric functions take the principal values)
JEE Main 2021 (Online) 1st September Evening Shift
36
The domain of the function

$$f(x) = {\sin ^{ - 1}}\left( {{{3{x^2} + x - 1} \over {{{(x - 1)}^2}}}} \right) + {\cos ^{ - 1}}\left( {{{x - 1} \over {x + 1}}} \right)$$ is :
JEE Main 2021 (Online) 31st August Evening Shift
37
Let M and m respectively be the maximum and minimum values of the function
f(x) = tan$$-$$1 (sin x + cos x) in $$\left[ {0,{\pi \over 2}} \right]$$, then the value of tan(M $$-$$ m) is equal to :
JEE Main 2021 (Online) 27th August Evening Shift
38
If $${({\sin ^{ - 1}}x)^2} - {({\cos ^{ - 1}}x)^2} = a$$; 0 < x < 1, a $$\ne$$ 0, then the value of 2x2 $$-$$ 1 is :
JEE Main 2021 (Online) 27th August Morning Shift
39
The domain of the function $${{\mathop{\rm cosec}\nolimits} ^{ - 1}}\left( {{{1 + x} \over x}} \right)$$ is :
JEE Main 2021 (Online) 26th August Evening Shift
40
If $$\sum\limits_{r = 1}^{50} {{{\tan }^{ - 1}}{1 \over {2{r^2}}} = p} $$, then the value of tan p is :
JEE Main 2021 (Online) 26th August Evening Shift
41
If the domain of the function $$f(x) = {{{{\cos }^{ - 1}}\sqrt {{x^2} - x + 1} } \over {\sqrt {{{\sin }^{ - 1}}\left( {{{2x - 1} \over 2}} \right)} }}$$ is the interval ($$\alpha$$, $$\beta$$], then $$\alpha$$ + $$\beta$$ is equal to :
JEE Main 2021 (Online) 22th July Evening Shift
42
The value of $$\tan \left( {2{{\tan }^{ - 1}}\left( {{3 \over 5}} \right) + {{\sin }^{ - 1}}\left( {{5 \over {13}}} \right)} \right)$$ is equal to :
JEE Main 2021 (Online) 20th July Evening Shift
43
The number of real roots of the equation $${\tan ^{ - 1}}\sqrt {x(x + 1)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = {\pi \over 4}$$ is :
JEE Main 2021 (Online) 20th July Morning Shift
44
The number of solutions of the equation

$${\sin ^{ - 1}}\left[ {{x^2} + {1 \over 3}} \right] + {\cos ^{ - 1}}\left[ {{x^2} - {2 \over 3}} \right] = {x^2}$$, for x$$\in$$[$$-$$1, 1], and [x] denotes the greatest integer less than or equal to x, is :
JEE Main 2021 (Online) 17th March Evening Shift
45
The sum of possible values of x for

tan$$-$$1(x + 1) + cot$$-$$1$$\left( {{1 \over {x - 1}}} \right)$$ = tan$$-$$1$$\left( {{8 \over {31}}} \right)$$ is :
JEE Main 2021 (Online) 17th March Morning Shift
46
If cot$$-$$1($$\alpha$$) = cot$$-$$1 2 + cot$$-$$1 8 + cot$$-$$1 18 + cot$$-$$1 32 + ...... upto 100 terms, then $$\alpha$$ is :
JEE Main 2021 (Online) 17th March Morning Shift
47
Given that the inverse trigonometric functions take principal values only. Then, the number of real values of x which satisfy

$${\sin ^{ - 1}}\left( {{{3x} \over 5}} \right) + {\sin ^{ - 1}}\left( {{{4x} \over 5}} \right) = {\sin ^{ - 1}}x$$ is equal to :
JEE Main 2021 (Online) 16th March Evening Shift
48
If 0 < a, b < 1, and tan$$-$$1a + tan$$-$$1b = $${\pi \over 4}$$, then the value of

$$(a + b) - \left( {{{{a^2} + {b^2}} \over 2}} \right) + \left( {{{{a^3} + {b^3}} \over 3}} \right) - \left( {{{{a^4} + {b^4}} \over 4}} \right) + .....$$ is :
JEE Main 2021 (Online) 26th February Evening Shift
49
If $${{{{\sin }^1}x} \over a} = {{{{\cos }^{ - 1}}x} \over b} = {{{{\tan }^{ - 1}}y} \over c}$$; $$0 < x < 1$$,
then the value of $$\cos \left( {{{\pi c} \over {a + b}}} \right)$$ is :
JEE Main 2021 (Online) 26th February Morning Shift
50
cosec$$\left[ {2{{\cot }^{ - 1}}(5) + {{\cos }^{ - 1}}\left( {{4 \over 5}} \right)} \right]$$ is equal to :
JEE Main 2021 (Online) 25th February Evening Shift
51
A possible value of $$\tan \left( {{1 \over 4}{{\sin }^{ - 1}}{{\sqrt {63} } \over 8}} \right)$$ is :
JEE Main 2021 (Online) 24th February Evening Shift
52
If S is the sum of the first 10 terms of the series

$${\tan ^{ - 1}}\left( {{1 \over 3}} \right) + {\tan ^{ - 1}}\left( {{1 \over 7}} \right) + {\tan ^{ - 1}}\left( {{1 \over {13}}} \right) + {\tan ^{ - 1}}\left( {{1 \over {21}}} \right) + ....$$

then tan(S) is equal to :
JEE Main 2020 (Online) 5th September Morning Slot
53
2$$\pi $$ - $$\left( {{{\sin }^{ - 1}}{4 \over 5} + {{\sin }^{ - 1}}{5 \over {13}} + {{\sin }^{ - 1}}{{16} \over {65}}} \right)$$ is equal to :
JEE Main 2020 (Online) 3rd September Morning Slot
54
The domain of the function
f(x) = $${\sin ^{ - 1}}\left( {{{\left| x \right| + 5} \over {{x^2} + 1}}} \right)$$ is (– $$\infty $$, -a]$$ \cup $$[a, $$\infty $$). Then a is equal to :
JEE Main 2020 (Online) 2nd September Morning Slot
55
The value of $${\sin ^{ - 1}}\left( {{{12} \over {13}}} \right) - {\sin ^{ - 1}}\left( {{3 \over 5}} \right)$$ is equal to :
JEE Main 2019 (Online) 12th April Morning Slot
56
If $${\cos ^{ - 1}}x - {\cos ^{ - 1}}{y \over 2} = \alpha $$,where –1 $$ \le $$ x $$ \le $$ 1, – 2 $$ \le $$ y $$ \le $$ 2, x $$ \le $$ $${y \over 2}$$ , then for all x, y, 4x2 – 4xy cos $$\alpha $$ + y2 is equal to :
JEE Main 2019 (Online) 10th April Evening Slot
57
If $$\alpha = {\cos ^{ - 1}}\left( {{3 \over 5}} \right)$$, $$\beta = {\tan ^{ - 1}}\left( {{1 \over 3}} \right)$$ where $$0 < \alpha ,\beta < {\pi \over 2}$$ , then $$\alpha $$ - $$\beta $$ is equal to :
JEE Main 2019 (Online) 8th April Morning Slot
58
Considering only the principal values of inverse functions, the set
A = { x $$ \ge $$ 0: tan$$-$$1(2x) + tan$$-$$1(3x) = $${\pi \over 4}$$}
JEE Main 2019 (Online) 12th January Morning Slot
59
All x satisfying the inequality (cot–1 x)2– 7(cot–1 x) + 10 > 0, lie in the interval :
JEE Main 2019 (Online) 11th January Evening Slot
60
The value of $$\cot \left( {\sum\limits_{n = 1}^{19} {{{\cot }^{ - 1}}} \left( {1 + \sum\limits_{p = 1}^n {2p} } \right)} \right)$$ is :
JEE Main 2019 (Online) 10th January Evening Slot
61
If  x = sin$$-$$1(sin10) and y = cos$$-$$1(cos10), then y $$-$$ x is equal to :
JEE Main 2019 (Online) 9th January Evening Slot
62
If $${\cos ^{ - 1}}\left( {{2 \over {3x}}} \right) + {\cos ^{ - 1}}\left( {{3 \over {4x}}} \right) = {\pi \over 2}$$ (x > $$3 \over 4$$), then x is equal to :
JEE Main 2019 (Online) 9th January Morning Slot
63
A value of x satisfying the equation sin[cot−1 (1+ x)] = cos [tan−1 x], is :
JEE Main 2017 (Online) 9th April Morning Slot
64
The value of tan-1 $$\left[ {{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} } \over {\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right],$$ $$\left| x \right| < {1 \over 2},x \ne 0,$$ is equal to :
JEE Main 2017 (Online) 8th April Morning Slot
65
Let $${\tan ^{ - 1}}y = {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {{{2x} \over {1 - {x^2}}}} \right),$$
where $$\left| x \right| < {1 \over {\sqrt 3 }}.$$ Then a value of $$y$$ is :
JEE Main 2015 (Offline)
66
If $$x, y, z$$ are in A.P. and $${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$$ and $${\tan ^{ - 1}}z$$ are also in A.P., then :
JEE Main 2013 (Offline)
67
The value of $$cot\left( {\cos e{c^{ - 1}}{5 \over 3} + {{\tan }^{ - 1}}{2 \over 3}} \right)$$ is :
AIEEE 2008
68
If sin-1$$\left( {{x \over 5}} \right)$$ + cosec-1$$\left( {{5 \over 4}} \right)$$ = $${\pi \over 2}$$, then the value of x is :
AIEEE 2007
69
If $${\cos ^{ - 1}}x - {\cos ^{ - 1}}{y \over 2} = \alpha ,$$ then $$4{x^2} - 4xy\cos \alpha + {y^2}$$ is equal to :
AIEEE 2005
70
The trigonometric equation $${\sin ^{ - 1}}x = 2{\sin ^{ - 1}}a$$ has a solution for :
AIEEE 2003
71
$${\cot ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) - {\tan ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) = x,$$ then sin x is equal to :
AIEEE 2002

MCQ (More than One Correct Answer)

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12