Let f : R $$\to$$ R be a differentiable function such that $$f\left( {{\pi \over 4}} \right) = \sqrt 2 ,\,f\left( {{\pi \over 2}} \right) = 0$$ and $$f'\left( {{\pi \over 2}} \right) = 1$$ and
let $$g(x) = \int_x^{\pi /4} {(f'(t)\sec t + \tan t\sec t\,f(t))\,dt} $$ for $$x \in \left[ {{\pi \over 4},{\pi \over 2}} \right)$$. Then $$\mathop {\lim }\limits_{x \to {{\left( {{\pi \over 2}} \right)}^ - }} g(x)$$ is equal to :
Let f : R $$\to$$ R be a continuous function satisfying f(x) + f(x + k) = n, for all x $$\in$$ R where k > 0 and n is a positive integer. If $${I_1} = \int\limits_0^{4nk} {f(x)dx} $$ and $${I_2} = \int\limits_{ - k}^{3k} {f(x)dx} $$, then :
Let [t] denote the greatest integer less than or equal to t. Then, the value of the integral $$\int\limits_0^1 {[ - 8{x^2} + 6x - 1]dx} $$ is equal to :
If m and n respectively are the number of local maximum and local minimum points of the function $$f(x) = \int\limits_0^{{x^2}} {{{{t^2} - 5t + 4} \over {2 + {e^t}}}dt} $$, then the ordered pair (m, n) is equal to