Sequences and Series · Mathematics · JEE Main
Numerical
Let $a_1, a_2, \ldots, a_{2024}$ be an Arithmetic Progression such that $a_1+\left(a_5+a_{10}+a_{15}+\ldots+a_{2020}\right)+a_{2024}=2233$. Then $a_1+a_2+a_3+\ldots+a_{2024}$ is equal to _________.
The interior angles of a polygon with n sides, are in an A.P. with common difference 6°. If the largest interior angle of the polygon is 219°, then n is equal to _______.
The roots of the quadratic equation $3 x^2-p x+q=0$ are $10^{\text {th }}$ and $11^{\text {th }}$ terms of an arithmetic progression with common difference $\frac{3}{2}$. If the sum of the first 11 terms of this arithmetic progression is 88 , then $q-2 p$ is equal to ________ .
If $$\left(\frac{1}{\alpha+1}+\frac{1}{\alpha+2}+\ldots . .+\frac{1}{\alpha+1012}\right)-\left(\frac{1}{2 \cdot 1}+\frac{1}{4 \cdot 3}+\frac{1}{6 \cdot 5}+\ldots \ldots+\frac{1}{2024 \cdot 2023}\right)=\frac{1}{2024}$$, then $$\alpha$$ is equal to ___________.
An arithmetic progression is written in the following way
The sum of all the terms of the 10th row is _________.
Let the positive integers be written in the form :
If the $$k^{\text {th }}$$ row contains exactly $$k$$ numbers for every natural number $$k$$, then the row in which the number 5310 will be, is __________.
Let $$\alpha=\sum_\limits{r=0}^n\left(4 r^2+2 r+1\right){ }^n C_r$$ and $$\beta=\left(\sum_\limits{r=0}^n \frac{{ }^n C_r}{r+1}\right)+\frac{1}{n+1}$$. If $$140<\frac{2 \alpha}{\beta}<281$$, then the value of $$n$$ is _________.
If $$\mathrm{S}(x)=(1+x)+2(1+x)^2+3(1+x)^3+\cdots+60(1+x)^{60}, x \neq 0$$, and $$(60)^2 \mathrm{~S}(60)=\mathrm{a}(\mathrm{b})^{\mathrm{b}}+\mathrm{b}$$, where $$a, b \in N$$, then $$(a+b)$$ equal to _________.
Let the first term of a series be $$T_1=6$$ and its $$r^{\text {th }}$$ term $$T_r=3 T_{r-1}+6^r, r=2,3$$, ............ $$n$$. If the sum of the first $$n$$ terms of this series is $$\frac{1}{5}\left(n^2-12 n+39\right)\left(4 \cdot 6^n-5 \cdot 3^n+1\right)$$, then $$n$$ is equal to ___________.
If $$1+\frac{\sqrt{3}-\sqrt{2}}{2 \sqrt{3}}+\frac{5-2 \sqrt{6}}{18}+\frac{9 \sqrt{3}-11 \sqrt{2}}{36 \sqrt{3}}+\frac{49-20 \sqrt{6}}{180}+\ldots$$ upto $$\infty=2+\left(\sqrt{\frac{b}{a}}+1\right) \log _e\left(\frac{a}{b}\right)$$, where a and b are integers with $$\operatorname{gcd}(a, b)=1$$, then $$\mathrm{11 a+18 b}$$ is equal to __________.
Let $$a_1, a_2, a_3, \ldots$$ be in an arithmetic progression of positive terms.
Let $$A_k=a_1^2-a_2^2+a_3^2-a_4^2+\ldots+a_{2 k-1}^2-a_{2 k}^2$$.
If $$\mathrm{A}_3=-153, \mathrm{~A}_5=-435$$ and $$\mathrm{a}_1^2+\mathrm{a}_2^2+\mathrm{a}_3^2=66$$, then $$\mathrm{a}_{17}-\mathrm{A}_7$$ is equal to ________.
Let $$S_n$$ be the sum to $$n$$-terms of an arithmetic progression $$3,7,11$$, If $$40<\left(\frac{6}{n(n+1)} \sum_\limits{k=1}^n S_k\right)<42$$, then $$n$$ equals ________.
Let $$\alpha=1^2+4^2+8^2+13^2+19^2+26^2+\ldots$$ upto 10 terms and $$\beta=\sum_\limits{n=1}^{10} n^4$$. If $$4 \alpha-\beta=55 k+40$$, then $$\mathrm{k}$$ is equal to __________.
$\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{2^{2}}-\frac{1}{2 \cdot 3}+\frac{1}{3^{2}}\right)+\left(\frac{1}{2^{3}}-\frac{1}{2^{2} \cdot 3}+\frac{1}{2 \cdot 3^{2}}-\frac{1}{3^{3}}\right)+$
$\left(\frac{1}{2^{4}}-\frac{1}{2^{3} \cdot 3}+\frac{1}{2^{2} \cdot 3^{2}}-\frac{1}{2 \cdot 3^{3}}+\frac{1}{3^{4}}\right)+\ldots$
is $\frac{\alpha}{\beta}$, where $\alpha$ and $\beta$ are co-prime, then $\alpha+3 \beta$ is equal to __________.
The sum to $$20$$ terms of the series $$2 \cdot 2^{2}-3^{2}+2 \cdot 4^{2}-5^{2}+2 \cdot 6^{2}-\ldots \ldots$$ is equal to __________.
For $$k \in \mathbb{N}$$, if the sum of the series $$1+\frac{4}{k}+\frac{8}{k^{2}}+\frac{13}{k^{3}}+\frac{19}{k^{4}}+\ldots$$ is 10 , then the value of $$k$$ is _________.
Let $$S=109+\frac{108}{5}+\frac{107}{5^{2}}+\ldots .+\frac{2}{5^{107}}+\frac{1}{5^{108}}$$. Then the value of $$\left(16 S-(25)^{-54}\right)$$ is equal to ___________.
Suppose $$a_{1}, a_{2}, 2, a_{3}, a_{4}$$ be in an arithmetico-geometric progression. If the common ratio of the corresponding geometric progression is 2 and the sum of all 5 terms of the arithmetico-geometric progression is $$\frac{49}{2}$$, then $$a_{4}$$ is equal to __________.
The sum of all those terms, of the arithmetic progression 3, 8, 13, ...., 373, which are not divisible by 3, is equal to ____________.
Let $$0 < z < y < x$$ be three real numbers such that $$\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$$ are in an arithmetic progression and $$x, \sqrt{2} y, z$$ are in a geometric progression. If $$x y+y z+z x=\frac{3}{\sqrt{2}} x y z$$ , then $$3(x+y+z)^{2}$$ is equal to ____________.
If
$$(20)^{19}+2(21)(20)^{18}+3(21)^{2}(20)^{17}+\ldots+20(21)^{19}=k(20)^{19}$$,
then $$k$$ is equal to ___________.
The sum of the common terms of the following three arithmetic progressions.
$$3,7,11,15, \ldots ., 399$$,
$$2,5,8,11, \ldots ., 359$$ and
$$2,7,12,17, \ldots ., 197$$,
is equal to _____________.
Let $$a_{1}=8, a_{2}, a_{3}, \ldots, a_{n}$$ be an A.P. If the sum of its first four terms is 50 and the sum of its last four terms is 170 , then the product of its middle two terms is ___________.
Let $$a_{1}, a_{2}, \ldots, a_{n}$$ be in A.P. If $$a_{5}=2 a_{7}$$ and $$a_{11}=18$$, then
$$12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots+\frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$$ is equal to ____________.
$$ \begin{aligned} & S_1=3+7+11+15+19+\ldots . . \\\\ & S_2=1+6+11+16+21+\ldots . . \end{aligned} $$
is :
Let $$\sum_\limits{n=0}^{\infty} \frac{\mathrm{n}^{3}((2 \mathrm{n}) !)+(2 \mathrm{n}-1)(\mathrm{n} !)}{(\mathrm{n} !)((2 \mathrm{n}) !)}=\mathrm{ae}+\frac{\mathrm{b}}{\mathrm{e}}+\mathrm{c}$$, where $$\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z}$$ and $$e=\sum_\limits{\mathrm{n}=0}^{\infty} \frac{1}{\mathrm{n} !}$$ Then $$\mathrm{a}^{2}-\mathrm{b}+\mathrm{c}$$ is equal to ____________.
Let $$a_1=b_1=1$$ and $${a_n} = {a_{n - 1}} + (n - 1),{b_n} = {b_{n - 1}} + {a_{n - 1}},\forall n \ge 2$$. If $$S = \sum\limits_{n = 1}^{10} {{{{b_n}} \over {{2^n}}}} $$ and $$T = \sum\limits_{n = 1}^8 {{n \over {{2^{n - 1}}}}} $$, then $${2^7}(2S - T)$$ is equal to ____________.
Let $$\{ {a_k}\} $$ and $$\{ {b_k}\} ,k \in N$$, be two G.P.s with common ratios $${r_1}$$ and $${r_2}$$ respectively such that $${a_1} = {b_1} = 4$$ and $${r_1} < {r_2}$$. Let $${c_k} = {a_k} + {b_k},k \in N$$. If $${c_2} = 5$$ and $${c_3} = {{13} \over 4}$$ then $$\sum\limits_{k = 1}^\infty {{c_k} - (12{a_6} + 8{b_4})} $$ is equal to __________.
Let $$a_1,a_2,a_3,...$$ be a $$GP$$ of increasing positive numbers. If the product of fourth and sixth terms is 9 and the sum of fifth and seventh terms is 24, then $$a_1a_9+a_2a_4a_9+a_5+a_7$$ is equal to __________.
For the two positive numbers $$a,b,$$ if $$a,b$$ and $$\frac{1}{18}$$ are in a geometric progression, while $$\frac{1}{a},10$$ and $$\frac{1}{b}$$ are in an arithmetic progression, then $$16a+12b$$ is equal to _________.
If $${{{1^3} + {2^3} + {3^3}\, + \,...\,up\,to\,n\,terms} \over {1\,.\,3 + 2\,.\,5 + 3\,.\,7\, + \,...\,up\,to\,n\,terms}} = {9 \over 5}$$, then the value of $$n$$ is
The 4$$^\mathrm{th}$$ term of GP is 500 and its common ratio is $$\frac{1}{m},m\in\mathbb{N}$$. Let $$\mathrm{S_n}$$ denote the sum of the first n terms of this GP. If $$\mathrm{S_6 > S_5 + 1}$$ and $$\mathrm{S_7 < S_6 + \frac{1}{2}}$$, then the number of possible values of m is ___________
Let $$a_{1}, a_{2}, a_{3}, \ldots$$ be an A.P. If $$\sum\limits_{r=1}^{\infty} \frac{a_{r}}{2^{r}}=4$$, then $$4 a_{2}$$ is equal to _________.
If $$\frac{1}{2 \times 3 \times 4}+\frac{1}{3 \times 4 \times 5}+\frac{1}{4 \times 5 \times 6}+\ldots+\frac{1}{100 \times 101 \times 102}=\frac{\mathrm{k}}{101}$$, then 34 k is equal to _________.
$$ \frac{2^{3}-1^{3}}{1 \times 7}+\frac{4^{3}-3^{3}+2^{3}-1^{3}}{2 \times 11}+\frac{6^{3}-5^{3}+4^{3}-3^{3}+2^{3}-1^{3}}{3 \times 15}+\cdots+ \frac{30^{3}-29^{3}+28^{3}-27^{3}+\ldots+2^{3}-1^{3}}{15 \times 63}$$ is equal to _____________.
If $$\sum\limits_{k=1}^{10} \frac{k}{k^{4}+k^{2}+1}=\frac{m}{n}$$, where m and n are co-prime, then $$m+n$$ is equal to _____________.
Different A.P.'s are constructed with the first term 100, the last term 199, and integral common differences. The sum of the common differences of all such A.P.'s having at least 3 terms and at most 33 terms is ___________.
The series of positive multiples of 3 is divided into sets : $$\{3\},\{6,9,12\},\{15,18,21,24,27\}, \ldots$$ Then the sum of the elements in the $$11^{\text {th }}$$ set is equal to ____________.
Let $$a, b$$ be two non-zero real numbers. If $$p$$ and $$r$$ are the roots of the equation $$x^{2}-8 \mathrm{a} x+2 \mathrm{a}=0$$ and $$\mathrm{q}$$ and s are the roots of the equation $$x^{2}+12 \mathrm{~b} x+6 \mathrm{~b}=0$$, such that $$\frac{1}{\mathrm{p}}, \frac{1}{\mathrm{q}}, \frac{1}{\mathrm{r}}, \frac{1}{\mathrm{~s}}$$ are in A.P., then $$\mathrm{a}^{-1}-\mathrm{b}^{-1}$$ is equal to _____________.
Let $$a_{1}=b_{1}=1, a_{n}=a_{n-1}+2$$ and $$b_{n}=a_{n}+b_{n-1}$$ for every
natural number $$n \geqslant 2$$. Then $$\sum\limits_{n = 1}^{15} {{a_n}.{b_n}} $$ is equal to ___________.
Let for $$f(x) = {a_0}{x^2} + {a_1}x + {a_2},\,f'(0) = 1$$ and $$f'(1) = 0$$. If a0, a1, a2 are in an arithmatico-geometric progression, whose corresponding A.P. has common difference 1 and corresponding G.P. has common ratio 2, then f(4) is equal to _____________.
Let 3, 6, 9, 12, ....... upto 78 terms and 5, 9, 13, 17, ...... upto 59 terms be two series. Then, the sum of the terms common to both the series is equal to ________.
Let for n = 1, 2, ......, 50, Sn be the sum of the infinite geometric progression whose first term is n2 and whose common ratio is $${1 \over {{{(n + 1)}^2}}}$$. Then the value of
$${1 \over {26}} + \sum\limits_{n = 1}^{50} {\left( {{S_n} + {2 \over {n + 1}} - n - 1} \right)} $$ is equal to ___________.
Let A = {1, a1, a2 ....... a18, 77} be a set of integers with 1 < a1 < a2 < ....... < a18 < 77.
Let the set A + A = {x + y : x, y $$\in$$ A} contain exactly 39 elements. Then, the value of a1 + a2 + ...... + a18 is equal to _____________.
If the sum of the first ten terms of the series
$${1 \over 5} + {2 \over {65}} + {3 \over {325}} + {4 \over {1025}} + {5 \over {2501}} + \,\,....$$
is $${m \over n}$$, where m and n are co-prime numbers, then m + n is equal to ______________.
If a1 (> 0), a2, a3, a4, a5 are in a G.P., a2 + a4 = 2a3 + 1 and 3a2 + a3 = 2a4, then a2 + a4 + 2a5 is equal to ___________.
For a natural number n, let $${\alpha _n} = {19^n} - {12^n}$$. Then, the value of $${{31{\alpha _9} - {\alpha _{10}}} \over {57{\alpha _8}}}$$ is ___________.
The greatest integer less than or equal to the sum of first 100 terms of the sequence $${1 \over 3},{5 \over 9},{{19} \over {27}},{{65} \over {81}},$$ ...... is equal to ___________.
$${\left( {1 + {2 \over 3} + {6 \over {{3^2}}} + {{10} \over {{3^3}}} + ....upto\,\infty } \right)^{{{\log }_{(0.25)}}\left( {{1 \over 3} + {1 \over {{3^2}}} + {1 \over {{3^3}}} + ....upto\,\infty } \right)}}$$
is $$l$$, then $$l$$2 is equal to _______________.
sequence $$-$$16, 8, $$-$$4, 2, ...... satisfy the equation
4x2 $$-$$ 9x + 5 = 0, then p + q is equal to __________.
MCQ (Single Correct Answer)
Consider an A. P. of positive integers, whose sum of the first three terms is 54 and the sum of the first twenty terms lies between 1600 and 1800. Then its 11th term is :
Let $\left\langle a_{\mathrm{n}}\right\rangle$ be a sequence such that $a_0=0, a_1=\frac{1}{2}$ and $2 a_{\mathrm{n}+2}=5 a_{\mathrm{n}+1}-3 a_{\mathrm{n}}, \mathrm{n}=0,1,2,3, \ldots$. Then $\sum\limits_{k=1}^{100} a_k$ is equal to
Let $\mathrm{T}_{\mathrm{r}}$ be the $\mathrm{r}^{\text {th }}$ term of an A.P. If for some $\mathrm{m}, \mathrm{T}_{\mathrm{m}}=\frac{1}{25}, \mathrm{~T}_{25}=\frac{1}{20}$, and $20 \sum\limits_{\mathrm{r}=1}^{25} \mathrm{~T}_{\mathrm{r}}=13$, then $5 \mathrm{~m} \sum\limits_{\mathrm{r}=\mathrm{m}}^{2 \mathrm{~m}} \mathrm{~T}_{\mathrm{r}}$ is equal to
In an arithmetic progression, if $\mathrm{S}_{40}=1030$ and $\mathrm{S}_{12}=57$, then $\mathrm{S}_{30}-\mathrm{S}_{10}$ is equal to :
If $7=5+\frac{1}{7}(5+\alpha)+\frac{1}{7^2}(5+2 \alpha)+\frac{1}{7^3}(5+3 \alpha)+\ldots \ldots \ldots \ldots \infty$, then the value of $\alpha$ is :
Let $S_n=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots$ upto $n$ terms. If the sum of the first six terms of an A.P. with first term -p and common difference p is $\sqrt{2026 \mathrm{~S}_{2025}}$, then the absolute difference betwen $20^{\text {th }}$ and $15^{\text {th }}$ terms of the A.P. is
If the first term of an A.P. is 3 and the sum of its first four terms is equal to one-fifth of the sum of the next four terms, then the sum of the first 20 terms is equal to
Suppose that the number of terms in an A.P. is $2 k, k \in N$. If the sum of all odd terms of the A.P. is 40 , the sum of all even terms is 55 and the last term of the A.P. exceeds the first term by 27 , then k is equal to:
Let $a_1, a_2, a_3, \ldots$ be a G.P. of increasing positive terms. If $a_1 a_5=28$ and $a_2+a_4=29$, then $a_6$ is equal to:
Let $$a, a r, a r^2$$, ............ be an infinite G.P. If $$\sum_\limits{n=0}^{\infty} a r^n=57$$ and $$\sum_\limits{n=0}^{\infty} a^3 r^{3 n}=9747$$, then $$a+18 r$$ is equal to
If the sum of the series $$\frac{1}{1 \cdot(1+\mathrm{d})}+\frac{1}{(1+\mathrm{d})(1+2 \mathrm{~d})}+\ldots+\frac{1}{(1+9 \mathrm{~d})(1+10 \mathrm{~d})}$$ is equal to 5, then $$50 \mathrm{~d}$$ is equal to :
In an increasing geometric progression of positive terms, the sum of the second and sixth terms is $$\frac{70}{3}$$ and the product of the third and fifth terms is 49. Then the sum of the $$4^{\text {th }}, 6^{\text {th }}$$ and $$8^{\text {th }}$$ terms is equal to:
Let $$A B C$$ be an equilateral triangle. A new triangle is formed by joining the middle points of all sides of the triangle $$A B C$$ and the same process is repeated infinitely many times. If $$\mathrm{P}$$ is the sum of perimeters and $$Q$$ is be the sum of areas of all the triangles formed in this process, then :
A software company sets up m number of computer systems to finish an assignment in 17 days. If 4 computer systems crashed on the start of the second day, 4 more computer systems crashed on the start of the third day and so on, then it took 8 more days to finish the assignment. The value of $$\mathrm{m}$$ is equal to:
For $$x \geqslant 0$$, the least value of $$\mathrm{K}$$, for which $$4^{1+x}+4^{1-x}, \frac{\mathrm{K}}{2}, 16^x+16^{-x}$$ are three consecutive terms of an A.P., is equal to :
If $$\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\ldots+\frac{1}{\sqrt{99}+\sqrt{100}}=m$$ and $$\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{99 \cdot 100}=\mathrm{n}$$, then the point $$(\mathrm{m}, \mathrm{n})$$ lies on the line
The value of $$\frac{1 \times 2^2+2 \times 3^2+\ldots+100 \times(101)^2}{1^2 \times 2+2^2 \times 3+\ldots .+100^2 \times 101}$$ is
Let three real numbers $$a, b, c$$ be in arithmetic progression and $$a+1, b, c+3$$ be in geometric progression. If $$a>10$$ and the arithmetic mean of $$a, b$$ and $$c$$ is 8, then the cube of the geometric mean of $$a, b$$ and $$c$$ is
Let the first three terms 2, p and q, with $$q \neq 2$$, of a G.P. be respectively the $$7^{\text {th }}, 8^{\text {th }}$$ and $$13^{\text {th }}$$ terms of an A.P. If the $$5^{\text {th }}$$ term of the G.P. is the $$n^{\text {th }}$$ term of the A.P., then $n$ is equal to:
Let $$2^{\text {nd }}, 8^{\text {th }}$$ and $$44^{\text {th }}$$ terms of a non-constant A. P. be respectively the $$1^{\text {st }}, 2^{\text {nd }}$$ and $$3^{\text {rd }}$$ terms of a G. P. If the first term of the A. P. is 1, then the sum of its first 20 terms is equal to -
For $$0 < c < b < a$$, let $$(a+b-2 c) x^2+(b+c-2 a) x+(c+a-2 b)=0$$ and $$\alpha \neq 1$$ be one of its root. Then, among the two statements
(I) If $$\alpha \in(-1,0)$$, then $$b$$ cannot be the geometric mean of $a$ and $$c$$
(II) If $$\alpha \in(0,1)$$, then $$b$$ may be the geometric mean of $$a$$ and $$c$$
The sum of the series $$\frac{1}{1-3 \cdot 1^2+1^4}+\frac{2}{1-3 \cdot 2^2+2^4}+\frac{3}{1-3 \cdot 3^2+3^4}+\ldots$$ up to 10 -terms is
Let $$a$$ and $$b$$ be be two distinct positive real numbers. Let $$11^{\text {th }}$$ term of a GP, whose first term is $$a$$ and third term is $$b$$, is equal to $$p^{\text {th }}$$ term of another GP, whose first term is $$a$$ and fifth term is $$b$$. Then $$p$$ is equal to
Let $$S_n$$ denote the sum of first $$n$$ terms of an arithmetic progression. If $$S_{20}=790$$ and $$S_{10}=145$$, then $$\mathrm{S}_{15}-\mathrm{S}_5$$ is :
If $$\log _e \mathrm{a}, \log _e \mathrm{~b}, \log _e \mathrm{c}$$ are in an A.P. and $$\log _e \mathrm{a}-\log _e 2 \mathrm{~b}, \log _e 2 \mathrm{~b}-\log _e 3 \mathrm{c}, \log _e 3 \mathrm{c} -\log _e$$ a are also in an A.P, then $$a: b: c$$ is equal to
If each term of a geometric progression $$a_1, a_2, a_3, \ldots$$ with $$a_1=\frac{1}{8}$$ and $$a_2 \neq a_1$$, is the arithmetic mean of the next two terms and $$S_n=a_1+a_2+\ldots . .+a_n$$, then $$S_{20}-S_{18}$$ is equal to
If in a G.P. of 64 terms, the sum of all the terms is 7 times the sum of the odd terms of the G.P, then the common ratio of the G.P. is equal to
In an A.P., the sixth term $$a_6=2$$. If the product $$a_1 a_4 a_5$$ is the greatest, then the common difference of the A.P. is equal to
$$\text { The } 20^{\text {th }} \text { term from the end of the progression } 20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots,-129 \frac{1}{4} \text { is : }$$
$4,9,14,19, \ldots \ldots$, up to $25^{\text {th }}$ term and
$3,6,9,12, \ldots \ldots$, up to $37^{\text {th }}$ term is :
means of two distinct positive numbers. Then $G_{1}^{4}+G_{2}^{4}+G_{3}^{4}+G_{1}^{2} G_{3}^{2}$ is equal to :
Let a$$_1$$, a$$_2$$, a$$_3$$, .... be a G.P. of increasing positive numbers. Let the sum of its 6th and 8th terms be 2 and the product of its 3rd and 5th terms be $$\frac{1}{9}$$. Then $$6(a_2+a_4)(a_4+a_6)$$ is equal to
Let $$s_{1}, s_{2}, s_{3}, \ldots, s_{10}$$ respectively be the sum to 12 terms of 10 A.P. s whose first terms are $$1,2,3, \ldots .10$$ and the common differences are $$1,3,5, \ldots \ldots, 19$$ respectively. Then $$\sum_\limits{i=1}^{10} s_{i}$$ is equal to :
Let $$< a_{\mathrm{n}} > $$ be a sequence such that $$a_{1}+a_{2}+\ldots+a_{n}=\frac{n^{2}+3 n}{(n+1)(n+2)}$$. If $$28 \sum_\limits{k=1}^{10} \frac{1}{a_{k}}=p_{1} p_{2} p_{3} \ldots p_{m}$$, where $$\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots ., \mathrm{p}_{\mathrm{m}}$$ are the first $$\mathrm{m}$$ prime numbers, then $$\mathrm{m}$$ is equal to
Let $$a, b, c$$ and $$d$$ be positive real numbers such that $$a+b+c+d=11$$. If the maximum value of $$a^{5} b^{3} c^{2} d$$ is $$3750 \beta$$, then the value of $$\beta$$ is
Let $$x_{1}, x_{2}, \ldots, x_{100}$$ be in an arithmetic progression, with $$x_{1}=2$$ and their mean equal to 200 . If $$y_{i}=i\left(x_{i}-i\right), 1 \leq i \leq 100$$, then the mean of $$y_{1}, y_{2}, \ldots, y_{100}$$ is :
If $$\mathrm{S}_{n}=4+11+21+34+50+\ldots$$ to $$n$$ terms, then $$\frac{1}{60}\left(\mathrm{~S}_{29}-\mathrm{S}_{9}\right)$$ is equal to :
Let the first term $$\alpha$$ and the common ratio r of a geometric progression be positive integers. If the sum of squares of its first three terms is 33033, then the sum of these three terms is equal to
Let $$\mathrm{a}_{\mathrm{n}}$$ be the $$\mathrm{n}^{\text {th }}$$ term of the series $$5+8+14+23+35+50+\ldots$$ and $$\mathrm{S}_{\mathrm{n}}=\sum_\limits{k=1}^{n} a_{k}$$. Then $$\mathrm{S}_{30}-a_{40}$$ is equal to :
Let $$S_{K}=\frac{1+2+\ldots+K}{K}$$ and $$\sum_\limits{j=1}^{n} S_{j}^{2}=\frac{n}{A}\left(B n^{2}+C n+D\right)$$, where $$A, B, C, D \in \mathbb{N}$$ and $$A$$ has least value. Then
If $$\operatorname{gcd}~(\mathrm{m}, \mathrm{n})=1$$ and $$1^{2}-2^{2}+3^{2}-4^{2}+\ldots . .+(2021)^{2}-(2022)^{2}+(2023)^{2}=1012 ~m^{2} n$$ then $$m^{2}-n^{2}$$ is equal to :
The sum of the first $$20$$ terms of the series $$5+11+19+29+41+\ldots$$ is :
The sum $$\sum\limits_{n = 1}^\infty {{{2{n^2} + 3n + 4} \over {(2n)!}}} $$ is equal to :
The sum of 10 terms of the series
$${1 \over {1 + {1^2} + {1^4}}} + {2 \over {1 + {2^2} + {2^4}}} + {3 \over {1 + {3^2} + {3^4}}}\, + \,....$$ is
If the sum and product of four positive consecutive terms of a G.P., are 126 and 1296 , respectively, then the sum of common ratios of all such GPs is
If $${a_n} = {{ - 2} \over {4{n^2} - 16n + 15}}$$, then $${a_1} + {a_2}\, + \,....\, + \,{a_{25}}$$ is equal to :
For three positive integers p, q, r, $${x^{p{q^2}}} = {y^{qr}} = {z^{{p^2}r}}$$ and r = pq + 1 such that 3, 3 log$$_yx$$, 3 log$$_zy$$, 7 log$$_xz$$ are in A.P. with common difference $$\frac{1}{2}$$. Then r-p-q is equal to
$$ \begin{aligned} &\text { Let }\left\{a_{n}\right\}_{n=0}^{\infty} \text { be a sequence such that } a_{0}=a_{1}=0 \text { and } \\\\ &a_{n+2}=3 a_{n+1}-2 a_{n}+1, \forall n \geq 0 . \end{aligned} $$
Then $$a_{25} a_{23}-2 a_{25} a_{22}-2 a_{23} a_{24}+4 a_{22} a_{24}$$ is equal to
Consider the sequence $$a_{1}, a_{2}, a_{3}, \ldots$$ such that $$a_{1}=1, a_{2}=2$$ and $$a_{n+2}=\frac{2}{a_{n+1}}+a_{n}$$ for $$\mathrm{n}=1,2,3, \ldots .$$ If $$\left(\frac{\mathrm{a}_{1}+\frac{1}{\mathrm{a}_{2}}}{\mathrm{a}_{3}}\right) \cdot\left(\frac{\mathrm{a}_{2}+\frac{1}{\mathrm{a}_{3}}}{\mathrm{a}_{4}}\right) \cdot\left(\frac{\mathrm{a}_{3}+\frac{1}{\mathrm{a}_{4}}}{\mathrm{a}_{5}}\right) \ldots\left(\frac{\mathrm{a}_{30}+\frac{1}{\mathrm{a}_{31}}}{\mathrm{a}_{32}}\right)=2^{\alpha}\left({ }^{61} \mathrm{C}_{31}\right)$$, then $$\alpha$$ is equal to :
Let the sum of an infinite G.P., whose first term is a and the common ratio is r, be 5 . Let the sum of its first five terms be $$\frac{98}{25}$$. Then the sum of the first 21 terms of an AP, whose first term is $$10\mathrm{a r}, \mathrm{n}^{\text {th }}$$ term is $$\mathrm{a}_{\mathrm{n}}$$ and the common difference is $$10 \mathrm{ar}^{2}$$, is equal to :
Suppose $$a_{1}, a_{2}, \ldots, a_{n}$$, .. be an arithmetic progression of natural numbers. If the ratio of the sum of first five terms to the sum of first nine terms of the progression is $$5: 17$$ and , $$110 < {a_{15}} < 120$$, then the sum of the first ten terms of the progression is equal to
Consider two G.Ps. 2, 22, 23, ..... and 4, 42, 43, .... of 60 and n terms respectively. If the geometric mean of all the 60 + n terms is $${(2)^{{{225} \over 8}}}$$, then $$\sum\limits_{k = 1}^n {k(n - k)} $$ is equal to :
The sum $$\sum\limits_{n = 1}^{21} {{3 \over {(4n - 1)(4n + 3)}}} $$ is equal to
The value of $$1 + {1 \over {1 + 2}} + {1 \over {1 + 2 + 3}} + \,\,....\,\, + \,\,{1 \over {1 + 2 + 3 + \,\,.....\,\, + \,\,11}}$$ is equal to:
The sum of the infinite series $$1 + {5 \over 6} + {{12} \over {{6^2}}} + {{22} \over {{6^3}}} + {{35} \over {{6^4}}} + {{51} \over {{6^5}}} + {{70} \over {{6^6}}} + \,\,.....$$ is equal to :
Let $$\{ {a_n}\} _{n = 0}^\infty $$ be a sequence such that $${a_0} = {a_1} = 0$$ and $${a_{n + 2}} = 2{a_{n + 1}} - {a_n} + 1$$ for all n $$\ge$$ 0. Then, $$\sum\limits_{n = 2}^\infty {{{{a_n}} \over {{7^n}}}} $$ is equal to:
If n arithmetic means are inserted between a and 100 such that the ratio of the first mean to the last mean is 1 : 7 and a + n = 33, then the value of n is :
Let A1, A2, A3, ....... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = $${1 \over {1296}}$$ and A2 + A4 = $${7 \over {36}}$$, then the value of A6 + A8 + A10 is equal to
Let $$S = 2 + {6 \over 7} + {{12} \over {{7^2}}} + {{20} \over {{7^3}}} + {{30} \over {{7^4}}} + \,.....$$. Then 4S is equal to
If a1, a2, a3 ...... and b1, b2, b3 ....... are A.P., and a1 = 2, a10 = 3, a1b1 = 1 = a10b10, then a4 b4 is equal to -
$$x = \sum\limits_{n = 0}^\infty {{a^n},y = \sum\limits_{n = 0}^\infty {{b^n},z = \sum\limits_{n = 0}^\infty {{c^n}} } } $$, where a, b, c are in A.P. and |a| < 1, |b| < 1, |c| < 1, abc $$\ne$$ 0, then :
If $$A = \sum\limits_{n = 1}^\infty {{1 \over {{{\left( {3 + {{( - 1)}^n}} \right)}^n}}}} $$ and $$B = \sum\limits_{n = 1}^\infty {{{{{( - 1)}^n}} \over {{{\left( {3 + {{( - 1)}^n}} \right)}^n}}}} $$, then $${A \over B}$$ is equal to :
The sum 1 + 2 . 3 + 3 . 32 + ......... + 10 . 39 is equal to :
Let x, y > 0. If x3y2 = 215, then the least value of 3x + 2y is
If $$\{ {a_i}\} _{i = 1}^n$$, where n is an even integer, is an arithmetic progression with common difference 1, and $$\sum\limits_{i = 1}^n {{a_i} = 192} ,\,\sum\limits_{i = 1}^{n/2} {{a_{2i}} = 120} $$, then n is equal to :
The sum $$\sum\limits_{n = 4}^\infty {\left( {{{2{S_n}} \over {n!}} - {1 \over {(n - 2)!}}} \right)} $$ is equal to :
$${3 \over {{1^2} \times {2^2}}} + {5 \over {{2^2} \times {3^2}}} + {7 \over {{3^2} \times {4^2}}} + ....$$ is :
and $${{2 + 4 + 6 + .... + 2y} \over {3 + 6 + 9 + ..... + 3y}} = {4 \over {{{\log }_{10}}x}}$$, then the ordered pair (x, y) is equal to :
$${1 \over {x + 1}} + {2 \over {{x^2} + 1}} + {{{2^2}} \over {{x^4} + 1}} + ...... + {{{2^{100}}} \over {{x^{{2^{100}}}} + 1}}$$ when x = 2 is :
100$$\alpha$$ $$-$$ 199$$\beta$$ = (100)(100) + (99)(101) + (98)(102) + ...... + (1)(199), then the slope of the line passing through ($$\alpha$$, $$\beta$$) and origin is :
$$\sum\limits_{n = 1}^\infty {{{{n^2} + 6n + 10} \over {(2n + 1)!}}} $$ is equal to :
$$1 + {2 \over 3} + {7 \over {{3^2}}} + {{12} \over {{3^3}}} + {{17} \over {{3^4}}} + {{22} \over {{3^5}}} + ......$$ is equal to :
b1, b2, … , bm is 2 more than the common
difference of A.P. a1, a2, …, an. If
a40 = –159, a100 = –399 and b100 = a70, then b1 is equal to :
(a2 + b2 + c2)p2 – 2(ab + bc + cd)p + (b2 + c2 + d2) = 0. Then :
$${\log _{\left( {{7^{1/2}}} \right)}}x + {\log _{\left( {{7^{1/3}}} \right)}}x + {\log _{\left( {{7^{1/4}}} \right)}}x + ...$$ is 460,
then x is equal to :
common difference is an integer and
Sn = a1 + a2 + .... + an. If a1 = 1, an = 300 and 15 $$ \le $$ n $$ \le $$ 50, then
the ordered pair (Sn-4, an–4) is equal to:
then an ordered pair $$\left( {\alpha ,\beta } \right)$$ is equal to:
20 + 19$${3 \over 5}$$ + 19$${1 \over 5}$$ + 18$${4 \over 5}$$ + ...
upto nth term is 488 and the nth term is negative, then :
{x + k$$a$$} + {x2 + (k + 2)$$a$$} + {x3 + (k + 4)$$a$$}
+ {x4 + (k + 6)$$a$$} + .... where a $$ \ne $$ 0 and x $$ \ne $$ 1.
If S = $${{{x^{10}} - x + 45a\left( {x - 1} \right)} \over {x - 1}}$$, then k is equal to :
a1, a2, a3, .... is 0 (a $$ \ne $$ 0), then the sum of the A.P.,
a1 , a3 , a5 ,....., a23 is ka1 , where k is equal to :
(x + y) + (x2+xy+y2) + (x3+x2y + xy2+y3) + ....
$$\sum\limits_{n = 1}^{100} {{a_{2n + 1}} = 200} $$ and $$\sum\limits_{n = 1}^{100} {{a_{2n}} = 100} $$,
then $$\sum\limits_{n = 1}^{200} {{a_n}} $$ is equal to :
(21+x + 21–x), ƒ(x) and (3x + 3–x) are in A.P.,
then the minimum value of ƒ(x) is
$${a_1}$$ < 0, $${a_1}$$ + $${a_2}$$ = 4 and $${a_3}$$ + $${a_4}$$ = 16.
If $$\sum\limits_{i = 1}^9 {{a_i}} = 4\lambda $$, then $$\lambda $$ is equal to:
3 + 4 + 8 + 9 + 13 + 14 + 18 + 19 + ..... is (102)m, then m is equal to :
$$1 + {{{1^3} + {2^3}} \over {1 + 2}} + {{{1^3} + {2^3} + {3^3}} \over {1 + 2 + 3}} + ...... + {{{1^3} + {2^3} + {3^3} + ... + {{15}^3}} \over {1 + 2 + 3 + ... + 15}}$$$$ - {1 \over 2}\left( {1 + 2 + 3 + ... + 15} \right)$$ is equal to :
$${{3 \times {1^3}} \over {{1^3}}} + {{5 \times ({1^3} + {2^3})} \over {{1^2} + {2^2}}} + {{7 \times \left( {{1^3} + {2^3} + {3^3}} \right)} \over {{1^2} + {2^2} + {3^2}}} + .....$$ upto 10 terms is:
then cos($$\alpha $$ + $$\beta $$) $$-$$ cos($$\alpha $$ $$-$$ $$\beta $$) is equal to :
$$\left| {\matrix{ {{{\log }_e}\,{a_1}^r{a_2}^k} & {{{\log }_e}\,{a_2}^r{a_3}^k} & {{{\log }_e}\,{a_3}^r{a_4}^k} \cr {{{\log }_e}\,{a_4}^r{a_5}^k} & {{{\log }_e}\,{a_5}^r{a_6}^k} & {{{\log }_e}\,{a_6}^r{a_7}^k} \cr {{{\log }_e}\,{a_7}^r{a_8}^k} & {{{\log }_e}\,{a_8}^r{a_9}^k} & {{{\log }_e}\,{a_9}^r{a_{10}}^k} \cr } } \right|$$ $$=$$ 0.
Then the number of elements in S, is -
$$1 + 6 + {{9\left( {{1^2} + {2^2} + {3^2}} \right)} \over 7} + {{12\left( {{1^2} + {2^2} + {3^2} + {4^2}} \right)} \over 9}$$
$$ + {{15\left( {{1^2} + {2^2} + ... + {5^2}} \right)} \over {11}} + .....$$ up to 15 terms, is :
$$S = \sum\limits_{i = 1}^{30} {{a_i}} $$ and $$T = \sum\limits_{i = 1}^{15} {{a_{\left( {2i - 1} \right)}}} $$.
If $$a_5$$ = 27 and S - 2T = 75, then $$a_{10}$$ is equal to :
$$1 + {3 \over 2} + {7 \over 4} + {{15} \over 8} + {{31} \over {16}} + ...,$$ is :
$$\sum\limits_{k = 0}^{12} {{a_{4k + 1}}} = 416$$ and $${a_9} + {a_{43}} = 66$$.
$$a_1^2 + a_2^2 + ....... + a_{17}^2 = 140m$$, then m is equal to
12 + 2.22 + 32 + 2.42 + 52 + 2.62 ...........
If B - 2A = 100$$\lambda $$, then $$\lambda $$ is equal to
Then, the least dd natural numbr p, so that Bn > An , for all n$$ \ge $$ p, is :
a < b < c and a + b + c = $${3 \over 4},$$ then the value of a is :
Sn = $${1 \over {{1^3}}}$$$$ + {{1 + 2} \over {{1^3} + {2^3}}} + {{1 + 2 + 3} \over {{1^3} + {2^3} + {3^3}}} + ......... + {{1 + 2 + ....... + n} \over {{1^3} + {2^3} + ...... + {n^3}}}.$$
If 100 Sn = n, then n is equal to :
9(25$${a^2}$$ + b2) + 25(c2 - 3$$a$$c) = 15b(3$$a$$ + c).
Then
then the minimum value of tanA + tanB is :
Then the sum 1 + z + z2 + . . . . .+ z11 is equal to :
If a3 + a7 + a11 + a15 = 72,
then the sum of its first 17 terms is equal to :
$${{{1^3}} \over 1} + {{{1^3} + {2^3}} \over {1 + 3}} + {{{1^3} + {2^3} + {3^3}} \over {1 + 3 + 5}} + ......$$
Statement-1: The sum of the series 1 + (1 + 2 + 4) + (4 + 6 + 9) + (9 + 12 + 16) +.....+ (361 + 380 + 400) is 8000.
Statement-2: $$\sum\limits_{k = 1}^n {\left( {{k^3} - {{(k - 1)}^3}} \right)} = {n^3}$$, for any natural number n.