1
JEE Main 2016 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of the integral

$$\int\limits_4^{10} {{{\left[ {{x^2}} \right]dx} \over {\left[ {{x^2} - 28x + 196} \right] + \left[ {{x^2}} \right]}}} ,$$

where [x] denotes the greatest integer less than or equal to x, is :
A
6
B
3
C
7
D
$${1 \over 3}$$
2
JEE Main 2016 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If   $$2\int\limits_0^1 {{{\tan }^{ - 1}}xdx = \int\limits_0^1 {{{\cot }^{ - 1}}} } \left( {1 - x + {x^2}} \right)dx,$$

then $$\int\limits_0^1 {{{\tan }^{ - 1}}} \left( {1 - x + {x^2}} \right)dx$$ is equalto :
A
log4
B
$${\pi \over 2}$$ + log2
C
log2
D
$${\pi \over 2}$$ $$-$$ log4
3
JEE Main 2016 (Offline)
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
$$\mathop {\lim }\limits_{n \to \infty } {\left( {{{\left( {n + 1} \right)\left( {n + 2} \right)...3n} \over {{n^{2n}}}}} \right)^{{1 \over n}}}$$ is equal to:
A
$${9 \over {{e^2}}}$$
B
$$3\,\log \,3 - 2$$
C
$${{18} \over {{e^4}}}$$
D
$${{27} \over {{e^2}}}$$
4
JEE Main 2015 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral
$$\int\limits_2^4 {{{\log \,{x^2}} \over {\log {x^2} + \log \left( {36 - 12x + {x^2}} \right)}}dx} $$ is equal to :
A
$$1$$
B
$$6$$
C
$$2$$
D
$$4$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12