1
JEE Main 2023 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1

The value of $$\int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{(2+3 \sin x)}{\sin x(1+\cos x)} d x$$ is equal to :

A
$$\frac{10}{3}-\sqrt{3}+\log _{e} \sqrt{3}$$
B
$$\frac{7}{2}-\sqrt{3}-\log _{e} \sqrt{3}$$
C
$$\frac{10}{3}-\sqrt{3}-\log _{e} \sqrt{3}$$
D
$$-2+3\sqrt{3}+\log _{e} \sqrt{3}$$
2
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
$\lim\limits_{n \rightarrow \infty} \frac{3}{n}\left\{4+\left(2+\frac{1}{n}\right)^2+\left(2+\frac{2}{n}\right)^2+\ldots+\left(3-\frac{1}{n}\right)^2\right\}$ is equal to :
A
0
B
$\frac{19}{3}$
C
19
D
12
3
JEE Main 2023 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1

If [t] denotes the greatest integer $$\le \mathrm{t}$$, then the value of $${{3(e - 1)} \over e}\int\limits_1^2 {{x^2}{e^{[x] + [{x^3}]}}dx}$$ is :

A
$$\mathrm{e^8-e}$$
B
$$\mathrm{e^7-1}$$
C
$$\mathrm{e^9-e}$$
D
$$\mathrm{e^8-1}$$
4
JEE Main 2023 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1

The value of the integral $$\int_1^2 {\left( {{{{t^4} + 1} \over {{t^6} + 1}}} \right)dt}$$ is

A
$${\tan ^{ - 1}}{1 \over 2} - {1 \over 3}{\tan ^{ - 1}}8 + {\pi \over 3}$$
B
$${\tan ^{ - 1}}2 - {1 \over 3}{\tan ^{ - 1}}8 + {\pi \over 3}$$
C
$${\tan ^{ - 1}}2 + {1 \over 3}{\tan ^{ - 1}}8 - {\pi \over 3}$$
D
$${\tan ^{ - 1}}{1 \over 2} + {1 \over 3}{\tan ^{ - 1}}8 - {\pi \over 3}$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12