1
JEE Main 2019 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of $$\int\limits_0^{2\pi } {\left[ {\sin 2x\left( {1 + \cos 3x} \right)} \right]} dx$$,
where [t] denotes the greatest integer function is :
A
2$$\pi $$
B
$$\pi $$
C
-2$$\pi $$
D
-$$\pi $$
2
JEE Main 2019 (Online) 9th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If f : R $$ \to $$ R is a differentiable function and f(2) = 6,
then $$\mathop {\lim }\limits_{x \to 2} {{\int\limits_6^{f\left( x \right)} {2tdt} } \over {\left( {x - 2} \right)}}$$ is :-
A
2f'(2)
B
24f'(2)
C
0
D
12f'(2)
3
JEE Main 2019 (Online) 9th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of the integral $$\int\limits_0^1 {x{{\cot }^{ - 1}}(1 - {x^2} + {x^4})dx} $$ is :-
A
$${\pi \over 2} - {1 \over 2}{\log _e}2$$
B
$${\pi \over 4} - {\log _e}2$$
C
$${\pi \over 4} - {1 \over 2}{\log _e}2$$
D
$${\pi \over 2} - {\log _e}2$$
4
JEE Main 2019 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of $$\int\limits_0^{\pi /2} {{{{{\sin }^3}x} \over {\sin x + \cos x}}dx} $$ is
A
$${{\pi - 2} \over 8}$$
B
$${{\pi - 2} \over 4}$$
C
$${{\pi - 1} \over 2}$$
D
$${{\pi - 1} \over 4}$$
JEE Main Subjects
EXAM MAP