1
JEE Main 2022 (Online) 24th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

$$\mathop {\lim }\limits_{n \to \infty } \left( {{{{n^2}} \over {({n^2} + 1)(n + 1)}} + {{{n^2}} \over {({n^2} + 4)(n + 2)}} + {{{n^2}} \over {({n^2} + 9)(n + 3)}} + \,\,....\,\, + \,\,{{{n^2}} \over {({n^2} + {n^2})(n + n)}}} \right)$$ is equal to :

A
$${\pi \over 8} + {1 \over 4}{\log _e}2$$
B
$${\pi \over 4} + {1 \over 8}{\log _e}2$$
C
$${\pi \over 4} - {1 \over 8}{\log _e}2$$
D
$${\pi \over 8} + {\log _e}\sqrt 2 $$
2
JEE Main 2021 (Online) 1st September Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f : R $$\to$$ R be a continuous function. Then $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{{\pi \over 4}\int\limits_2^{{{\sec }^2}x} {f(x)\,dx} } \over {{x^2} - {{{\pi ^2}} \over {16}}}}$$ is equal to :
A
f (2)
B
2f (2)
C
2f $$\left( {\sqrt 2 } \right)$$
D
4f (2)
3
JEE Main 2021 (Online) 1st September Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $${J_{n,m}} = \int\limits_0^{{1 \over 2}} {{{{x^n}} \over {{x^m} - 1}}dx} $$, $$\forall$$ n > m and n, m $$\in$$ N. Consider a matrix $$A = {[{a_{ij}}]_{3 \times 3}}$$ where $${a_{ij}} = \left\{ {\matrix{ {{j_{6 + i,3}} - {j_{i + 3,3}},} & {i \le j} \cr {0,} & {i > j} \cr } } \right.$$. Then $$\left| {adj{A^{ - 1}}} \right|$$ is :
A
(15)2 $$\times$$ 242
B
(15)2 $$\times$$ 234
C
(105)2 $$\times$$ 238
D
(105)2 $$\times$$ 236
4
JEE Main 2021 (Online) 1st September Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The function f(x), that satisfies the condition
$$f(x) = x + \int\limits_0^{\pi /2} {\sin x.\cos y\,f(y)\,dy} $$, is :
A
$$x + {2 \over 3}(\pi - 2)\sin x$$
B
$$x + (\pi + 2)\sin x$$
C
$$x + {\pi \over 2}\sin x$$
D
$$x + (\pi - 2)\sin x$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12