1
JEE Main 2024 (Online) 9th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\lim _\limits{x \rightarrow \frac{\pi}{2}}\left(\frac{\int_{x^3}^{(\pi / 2)^3}\left(\sin \left(2 t^{1 / 3}\right)+\cos \left(t^{1 / 3}\right)\right) d t}{\left(x-\frac{\pi}{2}\right)^2}\right)$$ is equal to

A
$$\frac{3 \pi^2}{2}$$
B
$$\frac{9 \pi^2}{8}$$
C
$$\frac{5 \pi^2}{9}$$
D
$$\frac{11 \pi^2}{10}$$
2
JEE Main 2024 (Online) 9th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of the integral $$\int_\limits{-1}^2 \log _e\left(x+\sqrt{x^2+1}\right) d x$$ is

A
$$\sqrt{5}-\sqrt{2}+\log _e\left(\frac{7+4 \sqrt{5}}{1+\sqrt{2}}\right)$$
B
$$\sqrt{2}-\sqrt{5}+\log _e\left(\frac{7+4 \sqrt{5}}{1+\sqrt{2}}\right)$$
C
$$\sqrt{5}-\sqrt{2}+\log _e\left(\frac{9+4 \sqrt{5}}{1+\sqrt{2}}\right)$$
D
$$\sqrt{2}-\sqrt{5}+\log _e\left(\frac{9+4 \sqrt{5}}{1+\sqrt{2}}\right)$$
3
JEE Main 2024 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\int_\limits\alpha^{\log _e 4} \frac{\mathrm{d} x}{\sqrt{\mathrm{e}^x-1}}=\frac{\pi}{6}$$. Then $$\mathrm{e}^\alpha$$ and $$\mathrm{e}^{-\alpha}$$ are the roots of the equation :

A
$$2 x^2-5 x+2=0$$
B
$$x^2-2 x-8=0$$
C
$$2 x^2-5 x-2=0$$
D
$$x^2+2 x-8=0$$
4
JEE Main 2024 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of $$k \in \mathbb{N}$$ for which the integral $$I_n=\int_0^1\left(1-x^k\right)^n d x, n \in \mathbb{N}$$, satisfies $$147 I_{20}=148 I_{21}$$ is

A
8
B
14
C
7
D
10
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12