1
JEE Main 2024 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$$ be defined as $$f(x)=a e^{2 x}+b e^x+c x$$. If $$f(0)=-1, f^{\prime}\left(\log _e 2\right)=21$$ and $$\int_0^{\log _e 4}(f(x)-c x) d x=\frac{39}{2}$$, then the value of $$|a+b+c|$$ equals

A
16
B
12
C
8
D
10
2
JEE Main 2024 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of $$\lim _\limits{n \rightarrow \infty} \sum_\limits{k=1}^n \frac{n^3}{\left(n^2+k^2\right)\left(n^2+3 k^2\right)}$$ is :

A
$$\frac{\pi}{8(2 \sqrt{3}+3)}$$
B
$$\frac{(2 \sqrt{3}+3) \pi}{24}$$
C
$$\frac{13 \pi}{8(4 \sqrt{3}+3)}$$
D
$$\frac{13(2 \sqrt{3}-3) \pi}{8}$$
3
JEE Main 2024 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbf{R}$$ be a differentiable function such that $$f(0)=\frac{1}{2}$$. If the $$\lim _\limits{x \rightarrow 0} \frac{x \int_0^x f(\mathrm{t}) \mathrm{dt}}{\mathrm{e}^{x^2}-1}=\alpha$$, then $$8 \alpha^2$$ is equal to :

A
4
B
2
C
1
D
16
4
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\mathop {\lim }\limits_{x \to {\pi \over 2}} \left( {{1 \over {{{\left( {x - {\pi \over 2}} \right)}^2}}}\int\limits_{{x^3}}^{{{\left( {{\pi \over 2}} \right)}^3}} {\cos \left( {{t^{{1 \over 3}}}} \right)dt} } \right)$$ is equal to

A
$$\frac{3 \pi^2}{4}$$
B
$$\frac{3 \pi^2}{8}$$
C
$$\frac{3 \pi}{4}$$
D
$$\frac{3 \pi}{8}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12