$$\int\limits_{0}^{2}\left(\left|2 x^{2}-3 x\right|+\left[x-\frac{1}{2}\right]\right) \mathrm{d} x$$, where [t] is the greatest integer function, is equal to :
Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined as
$$f(x)=a \sin \left(\frac{\pi[x]}{2}\right)+[2-x], a \in \mathbb{R}$$ where $$[t]$$ is the greatest integer less than or equal to $$t$$. If $$\mathop {\lim }\limits_{x \to -1 } f(x)$$ exists, then the value of $$\int\limits_{0}^{4} f(x) d x$$ is equal to
Let $$ I=\int_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x $$. Then
Let a function $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be defined as :
$$f(x)= \begin{cases}\int\limits_{0}^{x}(5-|t-3|) d t, & x>4 \\ x^{2}+b x & , x \leq 4\end{cases}$$
where $$\mathrm{b} \in \mathbb{R}$$. If $$f$$ is continuous at $$x=4$$, then which of the following statements is NOT true?