1
JEE Main 2022 (Online) 29th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$\int\limits_0^2 {\left( {\sqrt {2x} - \sqrt {2x - {x^2}} } \right)dx = \int\limits_0^1 {\left( {1 - \sqrt {1 - {y^2}} - {{{y^2}} \over 2}} \right)dy + \int\limits_1^2 {\left( {2 - {{{y^2}} \over 2}} \right)dy + I} } } $$, then I equals

A
$$\int\limits_0^1 {\left( {1 + \sqrt {1 - {y^2}} } \right)dy} $$
B
$$\int\limits_0^1 {\left( {{{{y^2}} \over 2} - \sqrt {1 - {y^2}} + 1} \right)dy} $$
C
$$\int\limits_0^1 {\left( {1 - \sqrt {1 - {y^2}} } \right)dy} $$
D
$$\int\limits_0^1 {\left( {{{{y^2}} \over 2} + \sqrt {1 - {y^2}} + 1} \right)dy} $$
2
JEE Main 2022 (Online) 29th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f:R \to R$$ be a function defined by :

$$f(x) = \left\{ {\matrix{ {\max \,\{ {t^3} - 3t\} \,t \le x} & ; & {x \le 2} \cr {{x^2} + 2x - 6} & ; & {2 < x < 3} \cr {[x - 3] + 9} & ; & {3 \le x \le 5} \cr {2x + 1} & ; & {x > 5} \cr } } \right.$$

where [t] is the greatest integer less than or equal to t. Let m be the number of points where f is not differentiable and $$I = \int\limits_{ - 2}^2 {f(x)\,dx} $$. Then the ordered pair (m, I) is equal to :

A
$$\left( {3,\,{{27} \over 4}} \right)$$
B
$$\left( {3,\,{{23} \over 4}} \right)$$
C
$$\left( {4,\,{{27} \over 4}} \right)$$
D
$$\left( {4,\,{{23} \over 4}} \right)$$
3
JEE Main 2022 (Online) 29th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\int_0^5 {\cos \left( {\pi \left( {x - \left[ {{x \over 2}} \right]} \right)} \right)dx} $$,

where [t] denotes greatest integer less than or equal to t, is equal to:

A
$$-$$3
B
$$-$$2
C
2
D
0
4
JEE Main 2022 (Online) 28th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let f : R $$\to$$ R be a differentiable function such that $$f\left( {{\pi \over 4}} \right) = \sqrt 2 ,\,f\left( {{\pi \over 2}} \right) = 0$$ and $$f'\left( {{\pi \over 2}} \right) = 1$$ and

let $$g(x) = \int_x^{\pi /4} {(f'(t)\sec t + \tan t\sec t\,f(t))\,dt} $$ for $$x \in \left[ {{\pi \over 4},{\pi \over 2}} \right)$$. Then $$\mathop {\lim }\limits_{x \to {{\left( {{\pi \over 2}} \right)}^ - }} g(x)$$ is equal to :

A
2
B
3
C
4
D
$$-$$3
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12