1
JEE Main 2021 (Online) 1st September Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $${J_{n,m}} = \int\limits_0^{{1 \over 2}} {{{{x^n}} \over {{x^m} - 1}}dx} $$, $$\forall$$ n > m and n, m $$\in$$ N. Consider a matrix $$A = {[{a_{ij}}]_{3 \times 3}}$$ where $${a_{ij}} = \left\{ {\matrix{ {{j_{6 + i,3}} - {j_{i + 3,3}},} & {i \le j} \cr {0,} & {i > j} \cr } } \right.$$. Then $$\left| {adj{A^{ - 1}}} \right|$$ is :
A
(15)2 $$\times$$ 242
B
(15)2 $$\times$$ 234
C
(105)2 $$\times$$ 238
D
(105)2 $$\times$$ 236
2
JEE Main 2021 (Online) 1st September Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The function f(x), that satisfies the condition
$$f(x) = x + \int\limits_0^{\pi /2} {\sin x.\cos y\,f(y)\,dy} $$, is :
A
$$x + {2 \over 3}(\pi - 2)\sin x$$
B
$$x + (\pi + 2)\sin x$$
C
$$x + {\pi \over 2}\sin x$$
D
$$x + (\pi - 2)\sin x$$
3
JEE Main 2021 (Online) 31st August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If [x] is the greatest integer $$\le$$ x, then

$${\pi ^2}\int\limits_0^2 {\left( {\sin {{\pi x} \over 2}} \right)(x - [x]} {)^{[x]}}dx$$ is equal to :
A
2($$\pi$$ $$-$$ 1)
B
4($$\pi$$ $$-$$ 1)
C
4($$\pi$$ + 1)
D
2($$\pi$$ + 1)
4
JEE Main 2021 (Online) 31st August Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f be a non-negative function in [0, 1] and twice differentiable in (0, 1). If $$\int_0^x {\sqrt {1 - {{(f'(t))}^2}} dt = \int_0^x {f(t)dt} } $$, $$0 \le x \le 1$$ and f(0) = 0, then $$\mathop {\lim }\limits_{x \to 0} {1 \over {{x^2}}}\int_0^x {f(t)dt} $$ :
A
equals 0
B
equals 1
C
does not exist
D
equals $${1 \over 2}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12