1
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Let $$f(x)$$ be a function satisfying $$f'(x)=f(x)$$ with $$f(0)=1$$ and $$g(x)$$ be a function that satisfies $$f\left( x \right) + g\left( x \right) = {x^2}$$. Then the value of the integral $$\int\limits_0^1 {f\left( x \right)g\left( x \right)dx,} $$ is
A
$$e + {{{e^2}} \over 2} + {5 \over 2}$$
B
$$e - {{{e^2}} \over 2} - {5 \over 2}$$
C
$$e + {{{e^2}} \over 2} - {3 \over 2}$$
D
$$e - {{{e^2}} \over 2} - {3 \over 2}$$
2
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If $$f\left( {a + b - x} \right) = f\left( x \right)$$ then $$\int\limits_a^b {xf\left( x \right)dx} $$ is equal to
A
$${{a + b} \over 2}\int\limits_a^b {f\left( {a + b + x} \right)dx} $$
B
$${{a + b} \over 2}\int\limits_a^b {f\left( {b - x} \right)dx} $$
C
$${{a + b} \over 2}\int\limits_a^b {f\left( x \right)dx} $$
D
$$\,{{b - a} \over 2}\int\limits_a^b {f\left( x \right)dx} $$
3
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
The value of the integral $$I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} $$ is
A
$${1 \over {n + 1}} + {1 \over {n + 2}}$$
B
$${1 \over {n + 1}}$$
C
$${1 \over {n + 2}}$$
D
$${1 \over {n + 1}} - {1 \over {n + 2}}$$
4
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
$$\mathop {\lim }\limits_{n \to \infty } {{1 + {2^4} + {3^4} + .... + {n^4}} \over {{n^5}}}$$ - $$\mathop {\lim }\limits_{n \to \infty } {{1 + {2^3} + {3^3} + .... + {n^3}} \over {{n^5}}}$$
A
$${1 \over 5}$$
B
$${1 \over 30}$$
C
zero
D
$${1 \over 4}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12