1
AIEEE 2006
MCQ (Single Correct Answer)
+4
-1
$$\int\limits_0^\pi {xf\left( {\sin x} \right)dx} $$ is equal to
A
$$\pi \int\limits_0^\pi {f\left( {\cos x} \right)dx} $$
B
$$\,\pi \int\limits_0^\pi {f\left( {sinx} \right)dx} $$
C
$${\pi \over 2}\int\limits_0^{\pi /2} {f\left( {sinx} \right)dx} $$
D
$$\pi \int\limits_0^{\pi /2} {f\left( {\cos x} \right)dx} $$
2
AIEEE 2006
MCQ (Single Correct Answer)
+4
-1
$$\int\limits_{ - {{3\pi } \over 2}}^{ - {\pi \over 2}} {\left[ {{{\left( {x + \pi } \right)}^3} + {{\cos }^2}\left( {x + 3\pi } \right)} \right]} dx$$ is equal to
A
$${{{\pi ^4}} \over {32}}$$
B
$${{{\pi ^4}} \over {32}} + {\pi \over 2}$$
C
$${\pi \over 2}$$
D
$${\pi \over 4} - 1$$
3
AIEEE 2006
MCQ (Single Correct Answer)
+4
-1
The value of $$\int\limits_1^a {\left[ x \right]} f'\left( x \right)dx,a > 1$$ where $${\left[ x \right]}$$ denotes the greatest integer not exceeding $$x$$ is
A
$$af\left( a \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + .............f\left( {\left[ a \right]} \right)} \right\}$$
B
$$\left[ a \right]f\left( a \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + ...........f\left( {\left[ a \right]} \right)} \right\}$$
C
$$\left[ a \right]f\left( {\left[ a \right]} \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + ...........f\left( a \right)} \right\}$$
D
$$af\left( {\left[ a \right]} \right) - \left\{ {f\left( 1 \right) + f\left( 2 \right) + .............f\left( a \right)} \right\}$$
4
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
Let $$f:R \to R$$ be a differentiable function having $$f\left( 2 \right) = 6$$,
$$f'\left( 2 \right) = \left( {{1 \over {48}}} \right)$$. Then $$\mathop {\lim }\limits_{x \to 2} \int\limits_6^{f\left( x \right)} {{{4{t^3}} \over {x - 2}}dt} $$ equals :
A
$$24$$
B
$$36$$
C
$$12$$
D
$$18$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12