$$\int\limits_0^2 {\left[ {{x^2}} \right]dx} $$ is
D
$$ - \sqrt 2 - \sqrt 3 + 5$$
Explanation
$$\int\limits_0^2 {\left[ {{x^2}} \right]} dx = \int\limits_0^1 {\left[ {{x^2}} \right]dx} + \int\limits_1^{\sqrt 2 } {\left[ {{x^2}} \right]} dx + $$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$$$\int\limits_{\sqrt 2 }^{\sqrt 3 } {\left[ {{x^2}} \right]} + \int\limits_{\sqrt 3 }^2 {\left[ {{x^2}} \right]} dx$$
$$ = \int\limits_0^1 {0dx} + \int\limits_1^{\sqrt 2 } {1dx} + \int\limits_{\sqrt 2 }^{\sqrt 3 } {2dx} + \int\limits_{\sqrt 3 }^2 {3dx} $$
$$ = \left[ x \right]_1^{\sqrt n } + \left[ {2x} \right]_{\sqrt 2 }^{\sqrt 3 } + \left[ {3x} \right]_{\sqrt 3 }^2$$
$$ = \sqrt 2 - 1 + 2\sqrt 3 - 2\sqrt 2 + 6 - 3\sqrt 3 $$
$$ = 5 - \sqrt 3 - \sqrt 2 $$