$${I_n} = \int\limits_0^{\pi /4} {{{\tan }^n}x\,dx} $$ then $$\,\mathop {\lim }\limits_{n \to \infty } \,n\left[ {{I_n} + {I_{n + 2}}} \right]$$ equals
Explanation
$${I_n} + {I_{n + 2}}$$
$$ = \int\limits_0^{\pi /4} {{{\tan }^n}} \,x\left( {1 + {{\tan }^2}x} \right)dx$$
$$ = \int\limits_0^{\pi /4} {{{\tan }^n}} x\,{\sec ^2}x\,dx$$
$$ = \left[ {{{{{\tan }^{n + 1}}x} \over {n + 1}}} \right]_0^{\pi /4}$$
$$ = {{1 - 0} \over {n + 1}} = {1 \over {n + 1}}$$
$$\therefore$$ $${I_n} + {I_{n + 2}} = {1 \over {n + 1}}$$
$$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } n\left[ {{I_n} + {I_{n + 2}}} \right]$$
$$ = \mathop {\lim }\limits_{n \to \infty } \,n.{1 \over {n + 1}} = \mathop {\lim }\limits_{n \to \infty } {n \over {n + 1}}$$
$$ = \mathop {\lim }\limits_{n \to \infty } {n \over {n\left( {1 + {1 \over n}} \right)}} = 1$$