1
JEE Main 2018 (Online) 15th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If   $${I_1} = \int_0^1 {{e^{ - x}}} {\cos ^2}x{\mkern 1mu} dx;$$

   $${I_2} = \int_0^1 {{e^{ - {x^2}}}} {\cos ^2}x{\mkern 1mu} dx$$  and

$${I_3} = \int_0^1 {{e^{ - {x^3}}}} dx;$$ then
A
I2  >  I3  >  I1
B
I2  >  I1  >  I3
C
I3  >  I2  >  I1
D
I3  >  I1  >  I2
2
JEE Main 2018 (Online) 15th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of integral $$\int_{{\pi \over 4}}^{{{3\pi } \over 4}} {{x \over {1 + \sin x}}dx} $$ is :
A
$$\pi \sqrt 2 $$
B
$$\pi \left( {\sqrt 2 - 1} \right)$$
C
$${\pi \over 2}\left( {\sqrt 2 + 1} \right)$$
D
$$2\pi \left( {\sqrt 2 - 1} \right)$$
3
JEE Main 2018 (Online) 15th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of the integral

$$\int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {{{\sin }^4}} x\left( {1 + \log \left( {{{2 + \sin x} \over {2 - \sin x}}} \right)} \right)dx$$ is :
A
0
B
$${3 \over 4}$$
C
$${3 \over 8}$$ $$\pi $$
D
$${3 \over 16}$$ $$\pi $$
4
JEE Main 2017 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
If    $$\mathop {\lim }\limits_{n \to \infty } \,\,{{{1^a} + {2^a} + ...... + {n^a}} \over {{{(n + 1)}^{a - 1}}\left[ {\left( {na + 1} \right) + \left( {na + 2} \right) + ..... + \left( {na + n} \right)} \right]}} = {1 \over {60}}$$

for some positive real number a, then a is equal to :
A
7
B
8
C
$${{15} \over 2}$$
D
$${{17} \over 2}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12