1
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
If $$\int\limits_0^\pi {xf\left( {\sin x} \right)dx = A\int\limits_0^{\pi /2} {f\left( {\sin x} \right)dx,} } $$ then $$A$$ is
A
$$2\pi $$
B
$$\pi $$
C
$${\pi \over 4}$$
D
$$0$$
2
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
If $$f\left( x \right) = {{{e^x}} \over {1 + {e^x}}},{I_1} = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {xg\left\{ {x\left( {1 - x} \right)} \right\}dx} $$
and $${I_2} = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {g\left\{ {x\left( {1 - x} \right)} \right\}dx} ,$$ then the value of $${{{I_2}} \over {{I_1}}}$$ is
A
$$1$$
B
$$-3$$
C
$$-1$$
D
$$2$$
3
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If $$f\left( y \right) = {e^y},$$ $$g\left( y \right) = y;y > 0$$ and

$$F\left( t \right) = \int\limits_0^t {f\left( {t - y} \right)g\left( y \right)dy,} $$ then :
A
$$F\left( t \right) = t{e^{ - t}}$$
B
$$F\left( t \right) = 1t - t{e^{ - 1}}\left( {1 + t} \right)$$
C
$$F\left( t \right) = {e^t} - \left( {1 + t} \right)$$
D
$$F\left( t \right) = t{e^t}$$.
4
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Let $$f(x)$$ be a function satisfying $$f'(x)=f(x)$$ with $$f(0)=1$$ and $$g(x)$$ be a function that satisfies $$f\left( x \right) + g\left( x \right) = {x^2}$$. Then the value of the integral $$\int\limits_0^1 {f\left( x \right)g\left( x \right)dx,} $$ is
A
$$e + {{{e^2}} \over 2} + {5 \over 2}$$
B
$$e - {{{e^2}} \over 2} - {5 \over 2}$$
C
$$e + {{{e^2}} \over 2} - {3 \over 2}$$
D
$$e - {{{e^2}} \over 2} - {3 \over 2}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12