1
JEE Main 2019 (Online) 12th April Morning Slot
+4
-1
If $$\int\limits_0^{{\pi \over 2}} {{{\cot x} \over {\cot x + \cos ecx}}} dx$$ = m($$\pi$$ + n), then m.n is equal to
A
- 1
B
1
C
$$- {1 \over 2}$$
D
$${1 \over 2}$$
2
JEE Main 2019 (Online) 12th April Morning Slot
+4
-1
Let f : R $$\to$$ R be a continuously differentiable function such that f(2) = 6 and f'(2) = $${1 \over {48}}$$. If $$\int\limits_6^{f\left( x \right)} {4{t^3}} dt$$ = (x - 2)g(x), then $$\mathop {\lim }\limits_{x \to 2} g\left( x \right)$$ is equal to :
A
18
B
36
C
12
D
24
3
JEE Main 2019 (Online) 10th April Evening Slot
+4
-1
The integral $$\int\limits_{\pi /6}^{\pi /3} {{{\sec }^{2/3}}} x\cos e{c^{4/3}}xdx$$ is equal to :
A
$${3^{{5 \over 3}}} - {3^{{1 \over 3}}}$$
B
$${3^{{5 \over 6}}} - {3^{{2 \over 3}}}$$
C
$${3^{{4 \over 3}}} - {3^{{1 \over 3}}}$$
D
$${3^{{7 \over 6}}} - {3^{{5 \over 6}}}$$
4
JEE Main 2019 (Online) 10th April Morning Slot
+4
-1
The value of $$\int\limits_0^{2\pi } {\left[ {\sin 2x\left( {1 + \cos 3x} \right)} \right]} dx$$,
where [t] denotes the greatest integer function is :
A
2$$\pi$$
B
$$\pi$$
C
-2$$\pi$$
D
-$$\pi$$
EXAM MAP
Medical
NEET