1
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
$4 \int_0^1\left(\frac{1}{\sqrt{3+x^2}+\sqrt{1+x^2}}\right) d x-3 \log _e(\sqrt{3})$ is equal to :
A
$2-\sqrt{2}-\log _{\mathrm{e}}(1+\sqrt{2})$
B
$2+\sqrt{2}+\log _{\mathrm{e}}(1+\sqrt{2})$
C
$2+\sqrt{2}-\log _{\mathrm{e}}(1+\sqrt{2})$
D
$2-\sqrt{2}+\log _e(1+\sqrt{2})$
2
JEE Main 2025 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $f(x)=\int\limits_0^x \mathrm{t}\left(\mathrm{t}^2-9 \mathrm{t}+20\right) \mathrm{dt}, 1 \leq x \leq 5$. If the range of $f$ is $[\alpha, \beta]$, then $4(\alpha+\beta)$ equals :
A

253

B

157

C

154

D

125

3
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The integral $80 \int\limits_0^{\frac{\pi}{4}}\left(\frac{\sin \theta+\cos \theta}{9+16 \sin 2 \theta}\right) d \theta$ is equal to :

A

3 $ \log 4 $

B

4 $ \log 3 $

C

6 $ \log \frac{4}{3} $

D

2 $ \log 3 $

4
JEE Main 2025 (Online) 28th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a twice differentiable function such that $f(2)=1$. If $\mathrm{F}(\mathrm{x})=\mathrm{x} f(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{R}$, $\int\limits_0^2 x F^{\prime}(x) d x=6$ and $\int\limits_0^2 x^2 F^{\prime \prime}(x) d x=40$, then $F^{\prime}(2)+\int\limits_0^2 F(x) d x$ is equal to :

A

13

B

11

C

9

D

15

JEE Main Subjects
EXAM MAP