1
JEE Main 2023 (Online) 13th April Evening Shift
+4
-1

Let $$|\vec{a}|=2,|\vec{b}|=3$$ and the angle between the vectors $$\vec{a}$$ and $$\vec{b}$$ be $$\frac{\pi}{4}$$. Then $$|(\vec{a}+2 \vec{b}) \times(2 \vec{a}-3 \vec{b})|^{2}$$ is equal to :

A
441
B
482
C
841
D
882
2
JEE Main 2023 (Online) 13th April Evening Shift
+4
-1

Let for a triangle $$\mathrm{ABC}$$,

$$\overrightarrow{\mathrm{AB}}=-2 \hat{i}+\hat{j}+3 \hat{k}$$

$$\overrightarrow{\mathrm{CB}}=\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}$$

$$\overrightarrow{\mathrm{CA}}=4 \hat{i}+3 \hat{j}+\delta \hat{k}$$

If $$\delta > 0$$ and the area of the triangle $$\mathrm{ABC}$$ is $$5 \sqrt{6}$$, then $$\overrightarrow{C B} \cdot \overrightarrow{C A}$$ is equal to

A
60
B
54
C
120
D
108
3
JEE Main 2023 (Online) 13th April Morning Shift
+4
-1

Let $$\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$$ and $$\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$$. If a vector $$\vec{d}$$ satisfies $$\vec{d} \times \vec{b}=\vec{c} \times \vec{b}$$ and $$\vec{d} \cdot \vec{a}=24$$, then $$|\vec{d}|^{2}$$ is equal to :

A
313
B
413
C
423
D
323
4
JEE Main 2023 (Online) 12th April Morning Shift
+4
-1
Out of Syllabus

Let $$a, b, c$$ be three distinct real numbers, none equal to one. If the vectors $$a \hat{i}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}+b \hat{j}+\hat{\mathrm{k}}$$ and $$\hat{\mathrm{i}}+\hat{\mathrm{j}}+c \hat{\mathrm{k}}$$ are coplanar, then $$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$$ is equal to :

A
$$-$$2
B
1
C
$$-$$1
D
2
EXAM MAP
Medical
NEET