1
JEE Main 2021 (Online) 22th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
Let a vector $${\overrightarrow a }$$ be coplanar with vectors $$\overrightarrow b = 2\widehat i + \widehat j + \widehat k$$ and $$\overrightarrow c = \widehat i - \widehat j + \widehat k$$. If $${\overrightarrow a}$$ is perpendicular to $$\overrightarrow d = 3\widehat i + 2\widehat j + 6\widehat k$$, and $$\left| {\overrightarrow a } \right| = \sqrt {10} $$. Then a possible value of $$[\matrix{ {\overrightarrow a } & {\overrightarrow b } & {\overrightarrow c } \cr } ] + [\matrix{ {\overrightarrow a } & {\overrightarrow b } & {\overrightarrow d } \cr } ] + [\matrix{ {\overrightarrow a } & {\overrightarrow c } & {\overrightarrow d } \cr } ]$$ is equal to :
A
$$-$$42
B
$$-$$40
C
$$-$$29
D
$$-$$38
2
JEE Main 2021 (Online) 22th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
Let three vectors $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ be such that $$\overrightarrow a \times \overrightarrow b = \overrightarrow c $$, $$\overrightarrow b \times \overrightarrow c = \overrightarrow a $$ and $$\left| {\overrightarrow a } \right| = 2$$. Then which one of the following is not true?
A
$$\overrightarrow a \times \left( {(\overrightarrow b + \overrightarrow c ) \times (\overrightarrow b \times \overrightarrow c )} \right) = \overrightarrow 0 $$
B
Projection of $$\overrightarrow a $$ on $$(\overrightarrow b \times \overrightarrow c )$$ is 2
C
$$\left[ {\matrix{ {\overrightarrow a } & {\overrightarrow b } & {\overrightarrow c } \cr } } \right] + \left[ {\matrix{ {\overrightarrow c } & {\overrightarrow a } & {\overrightarrow b } \cr } } \right] = 8$$
D
$${\left| {3\overrightarrow a + \overrightarrow b - 2\overrightarrow c } \right|^2} = 51$$
3
JEE Main 2021 (Online) 20th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
In a triangle ABC, if $$\left| {\overrightarrow {BC} } \right| = 3$$, $$\left| {\overrightarrow {CA} } \right| = 5$$ and $$\left| {\overrightarrow {BA} } \right| = 7$$, then the projection of the vector $$\overrightarrow {BA} $$ on $$\overrightarrow {BC} $$ is equal to :
A
$${{19} \over 2}$$
B
$${{13} \over 2}$$
C
$${{11} \over 2}$$
D
$${{15} \over 2}$$
4
JEE Main 2021 (Online) 20th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
Let $$\overrightarrow a = 2\widehat i + \widehat j - 2\widehat k$$ and $$\overrightarrow b = \widehat i + \widehat j$$. If $$\overrightarrow c $$ is a vector such that $$\overrightarrow a .\,\overrightarrow c = \left| {\overrightarrow c } \right|,\left| {\overrightarrow c - \overrightarrow a } \right| = 2\sqrt 2 $$ and the angle between $$(\overrightarrow a \times \overrightarrow b )$$ and $$\overrightarrow c $$ is $${\pi \over 6}$$, then the value of $$\left| {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c } \right|$$ is :
A
$${2 \over 3}$$
B
4
C
3
D
$${3 \over 2}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12