1
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be three non-zero vectors such that no two of these are collinear. If the vector $$\overrightarrow a + 2\overrightarrow b $$ is collinear with $$\overrightarrow c $$ and $$\overrightarrow b + 3\overrightarrow c $$ is collinear with $$\overrightarrow a $$ ($$\lambda $$ being some non-zero scalar) then $$\overrightarrow a + 2\overrightarrow b + 6\overrightarrow c $$ equals to :
A
$\overrightarrow{0}$
B
$$\lambda \overrightarrow b $$
C
$$\lambda \overrightarrow c $$
D
$$\lambda \overrightarrow a $$
2
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be non-zero vectors such that $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = {1 \over 3}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\overrightarrow a \,\,.$$ If $$\theta $$ is the acute angle between the vectors $${\overrightarrow b }$$ and $${\overrightarrow c },$$ then $$sin\theta $$ equals :
A
$${{2\sqrt 2 } \over 3}$$
B
$${{\sqrt 2 } \over 3}$$
C
$${2 \over 3}$$
D
$${1 \over 3}$$
3
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
A particle acted on by constant forces $$4\widehat i + \widehat j - 3\widehat k$$ and $$3\widehat i + \widehat j - \widehat k$$ is displaced from the point $$\widehat i + 2\widehat j + 3\widehat k$$ to the point $$\,5\widehat i + 4\widehat j + \widehat k.$$ The total work done by the forces is :
A
$$50$$ units
B
$$20$$ units
C
$$30$$ units
D
$$40$$ units
4
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
If $$\overrightarrow u \,,\overrightarrow v $$ and $$\overrightarrow w $$ are three non-coplanar vectors, then $$\,\left( {\overrightarrow u + \overrightarrow v - \overrightarrow w } \right).\left( {\overrightarrow u - \overrightarrow v } \right) \times \left( {\overrightarrow v - \overrightarrow w} \right)$$ equals :
A
$$3\overrightarrow u .\overrightarrow v \times \overrightarrow w $$
B
$$0$$
C
$$\overrightarrow u .\overrightarrow v \times \overrightarrow w $$
D
$$\overrightarrow u .\overrightarrow w \times \overrightarrow v $$
JEE Main Subjects
EXAM MAP