Let a unit vector which makes an angle of $$60^{\circ}$$ with $$2 \hat{i}+2 \hat{j}-\hat{k}$$ and an angle of $$45^{\circ}$$ with $$\hat{i}-\hat{k}$$ be $$\vec{C}$$. Then $$\vec{C}+\left(-\frac{1}{2} \hat{i}+\frac{1}{3 \sqrt{2}} \hat{j}-\frac{\sqrt{2}}{3} \hat{k}\right)$$ is:
$\overrightarrow{\mathrm{c}}=(((\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \times \hat{i}) \times \hat{i}) \times \hat{i}$. Then $\vec{c} \cdot(-\hat{i}+\hat{j}+\hat{k})$ is equal to :
Let $$\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}, \vec{b}=4 \hat{i}+\hat{j}+7 \hat{k}$$ and $$\vec{c}=\hat{i}-3 \hat{j}+4 \hat{k}$$ be three vectors. If a vectors $$\vec{p}$$ satisfies $$\vec{p} \times \vec{b}=\vec{c} \times \vec{b}$$ and $$\vec{p} \cdot \vec{a}=0$$, then $$\vec{p} \cdot(\hat{i}-\hat{j}-\hat{k})$$ is equal to
The distance of the point $$Q(0,2,-2)$$ form the line passing through the point $$P(5,-4, 3)$$ and perpendicular to the lines $$\vec{r}=(-3 \hat{i}+2 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+5 \hat{k}), \lambda \in \mathbb{R}$$ and $$\vec{r}=(\hat{i}-2 \hat{j}+\hat{k})+\mu(-\hat{i}+3 \hat{j}+2 \hat{k}), \mu \in \mathbb{R}$$ is :