1
AIEEE 2002
+4
-1
Out of Syllabus
If $$\overrightarrow a \,\,,\,\,\overrightarrow b \,\,,\,\,\overrightarrow c$$ are vectors such that $$\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right] = 4$$ then $$\left[ {\overrightarrow a \, \times \overrightarrow b \,\,\overrightarrow b \times \,\overrightarrow c \,\,\overrightarrow c \, \times \overrightarrow a } \right] =$$
A
$$16$$
B
$$64$$
C
$$4$$
D
$$8$$
2
AIEEE 2002
+4
-1
If the vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ from the sides $B C, C A$ and $A B$ respectively of a triangle $A B C$, then :
A
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}=0$
B
$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$
C
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=0$
D
$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{0}}$
3
AIEEE 2002
+4
-1
If $$\left| {\overrightarrow a } \right| = 5,\left| {\overrightarrow b } \right| = 4,\left| {\overrightarrow c } \right| = 3$$ thus what will be the value of $$\left| {\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a } \right|,$$ given that $$\overrightarrow a + \overrightarrow b + \overrightarrow c = 0$$ :
A
$$25$$
B
$$50$$
C
$$-25$$
D
$$-50$$
4
AIEEE 2002
+4
-1
$$\overrightarrow a = 3\widehat i - 5\widehat j$$ and $$\overrightarrow b = 6\widehat i + 3\widehat j$$ are two vectors and $$\overrightarrow c$$ is a vector such that $$\overrightarrow c = \overrightarrow a \times \overrightarrow b$$ then $$\left| {\overrightarrow a } \right|:\left| {\overrightarrow b } \right|:\left| {\overrightarrow c } \right|$$ =
A
$$\sqrt {34} :\sqrt {45} :\sqrt {39}$$
B
$$\sqrt {34} :\sqrt {45} :39$$
C
$$34:39:45$$
D
$$\,39:35:34$$
EXAM MAP
Medical
NEET