Let $$\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$$ and $$\vec{b}=\hat{i}+3 \hat{j}+5 \hat{k}$$ be two vectors. Then which one of the following statements is TRUE ?

Let $$\vec{a}=2 \hat{i}-7 \hat{j}+5 \hat{k}, \vec{b}=\hat{i}+\hat{k}$$ and $$\vec{c}=\hat{i}+2 \hat{j}-3 \hat{k}$$ be three given vectors. If $$\overrightarrow{\mathrm{r}}$$ is a vector such that $$\vec{r} \times \vec{a}=\vec{c} \times \vec{a}$$ and $$\vec{r} \cdot \vec{b}=0$$, then $$|\vec{r}|$$ is equal to :

Let $$\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$$, and $$\vec{b}$$ and $$\vec{c}$$ be two nonzero vectors such that $$|\vec{a}+\vec{b}+\vec{c}|=|\vec{a}+\vec{b}-\vec{c}|$$ and $$\vec{b} \cdot \vec{c}=0$$. Consider the following two statements:

(A) $$|\vec{a}+\lambda \vec{c}| \geq|\vec{a}|$$ for all $$\lambda \in \mathbb{R}$$.

(B) $$\vec{a}$$ and $$\vec{c}$$ are always parallel.

Then,