1
JEE Main 2022 (Online) 29th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\vec{a}, \vec{b}, \vec{c}$$ be three coplanar concurrent vectors such that angles between any two of them is same. If the product of their magnitudes is 14 and $$(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{c})+(\vec{b} \times \vec{c}) \cdot(\vec{c} \times \vec{a})+(\vec{c} \times \vec{a}) \cdot(\vec{a} \times \vec{b})=168$$, then $$|\vec{a}|+|\vec{b}|+|\vec{c}|$$ is equal to :

A
10
B
14
C
16
D
18
2
JEE Main 2022 (Online) 29th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

Let $$\overrightarrow{\mathrm{a}}=3 \hat{i}+\hat{j}$$ and $$\overrightarrow{\mathrm{b}}=\hat{i}+2 \hat{j}+\hat{k}$$. Let $$\overrightarrow{\mathrm{c}}$$ be a vector satisfying $$\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\overrightarrow{\mathrm{b}}+\lambda \overrightarrow{\mathrm{c}}$$. If $$\overrightarrow{\mathrm{b}}$$ and $$\overrightarrow{\mathrm{c}}$$ are non-parallel, then the value of $$\lambda$$ is :

A
$$-$$5
B
5
C
1
D
$$-$$1
3
JEE Main 2022 (Online) 29th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\hat{a}$$ and $$\hat{b}$$ be two unit vectors such that the angle between them is $$\frac{\pi}{4}$$. If $$\theta$$ is the angle between the vectors $$(\hat{a}+\hat{b})$$ and $$(\hat{a}+2 \hat{b}+2(\hat{a} \times \hat{b}))$$, then the value of $$164 \,\cos ^{2} \theta$$ is equal to :

A
$$90+27 \sqrt{2}$$
B
$$45+18 \sqrt{2}$$
C
$$90+3 \sqrt{2}$$
D
$$54+90 \sqrt{2}$$
4
JEE Main 2022 (Online) 28th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let S be the set of all a $$\in R$$ for which the angle between the vectors $$ \vec{u}=a\left(\log _{e} b\right) \hat{i}-6 \hat{j}+3 \hat{k}$$ and $$\vec{v}=\left(\log _{e} b\right) \hat{i}+2 \hat{j}+2 a\left(\log _{e} b\right) \hat{k}$$, $$(b>1)$$ is acute. Then S is equal to :

A
$$\left(-\infty,-\frac{4}{3}\right)$$
B
$$\Phi $$
C
$$\left(-\frac{4}{3}, 0\right)$$
D
$$\left(\frac{12}{7}, \infty\right)$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12