1
JEE Main 2019 (Online) 10th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\overrightarrow \alpha $$ = $$\left( {\lambda - 2} \right)\overrightarrow a + \overrightarrow b $$  and  $$\overrightarrow \beta = \left( {4\lambda - 2} \right)\overrightarrow a + 3\overrightarrow b $$ be two given vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ are non-collinear. The value of $$\lambda $$ for which vectors $$\overrightarrow \alpha $$ and $$\overrightarrow \beta $$ are collinear, is -
A
4
B
3
C
$$-$$3
D
$$-$$4
2
JEE Main 2019 (Online) 10th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\overrightarrow a = 2\widehat i + {\lambda _1}\widehat j + 3\widehat k,\,\,$$   $$\overrightarrow b = 4\widehat i + \left( {3 - {\lambda _2}} \right)\widehat j + 6\widehat k,$$  and  $$\overrightarrow c = 3\widehat i + 6\widehat j + \left( {{\lambda _3} - 1} \right)\widehat k$$  be three vectors such that $$\overrightarrow b = 2\overrightarrow a $$ and $$\overrightarrow a $$ is perpendicular to $$\overrightarrow c $$. Then a possible value of $$\left( {{\lambda _1},{\lambda _2},{\lambda _3}} \right)$$ is :
A
(1, 5, 1)
B
(1, 3, 1)
C
$$\left( { - {1 \over 2},4,0} \right)$$
D
$$\left( {{1 \over 2},4, - 2} \right)$$
3
JEE Main 2019 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let  $$\overrightarrow a = \widehat i + \widehat j + \sqrt 2 \widehat k,$$   $$\overrightarrow b = {b_1}\widehat i + {b_2}\widehat j + \sqrt 2 \widehat k$$,    $$\overrightarrow c = 5\widehat i + \widehat j + \sqrt 2 \widehat k$$   be three vectors such that the projection vector of $$\overrightarrow b $$ on $$\overrightarrow a $$ is $$\overrightarrow a $$.
If   $$\overrightarrow a + \overrightarrow b $$   is perpendicular to $$\overrightarrow c $$ , then $$\left| {\overrightarrow b } \right|$$ is equal to :
A
$$\sqrt {32} $$
B
6
C
$$\sqrt {22} $$
D
4
4
JEE Main 2019 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
Let $$\overrightarrow a $$ = $$\widehat i - \widehat j$$, $$\overrightarrow b $$ = $$\widehat i + \widehat j + \widehat k$$ and $$\overrightarrow c $$

be a vector such that $$\overrightarrow a $$ × $$\overrightarrow c $$ + $$\overrightarrow b $$ = $$\overrightarrow 0 $$

and $$\overrightarrow a $$ . $$\overrightarrow c $$ = 4, then |$$\overrightarrow c $$|2 is equal to :
A
8
B
$$19 \over 2$$
C
9
D
$$17 \over 2$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12