1
JEE Main 2023 (Online) 29th January Morning Shift
+4
-1

If the vectors $$\overrightarrow a = \lambda \widehat i + \mu \widehat j + 4\widehat k$$, $$\overrightarrow b = - 2\widehat i + 4\widehat j - 2\widehat k$$ and $$\overrightarrow c = 2\widehat i + 3\widehat j + \widehat k$$ are coplanar and the projection of $$\overrightarrow a$$ on the vector $$\overrightarrow b$$ is $$\sqrt {54}$$ units, then the sum of all possible values of $$\lambda + \mu$$ is equal to :

A
24
B
0
C
18
D
6
2
JEE Main 2023 (Online) 25th January Evening Shift
+4
-1
Out of Syllabus

Let $$\overrightarrow a = - \widehat i - \widehat j + \widehat k,\overrightarrow a \,.\,\overrightarrow b = 1$$ and $$\overrightarrow a \times \overrightarrow b = \widehat i - \widehat j$$. Then $$\overrightarrow a - 6\overrightarrow b$$ is equal to :

A
$$3\left( {\widehat i + \widehat j + \widehat k} \right)$$
B
$$3\left( {\widehat i - \widehat j - \widehat k} \right)$$
C
$$3\left( {\widehat i + \widehat j - \widehat k} \right)$$
D
$$3\left( {\widehat i - \widehat j + \widehat k} \right)$$
3
JEE Main 2023 (Online) 25th January Evening Shift
+4
-1
Out of Syllabus

If the four points, whose position vectors are $$3\widehat i - 4\widehat j + 2\widehat k,\widehat i + 2\widehat j - \widehat k, - 2\widehat i - \widehat j + 3\widehat k$$ and $$5\widehat i - 2\alpha \widehat j + 4\widehat k$$ are coplanar, then $$\alpha$$ is equal to :

A
$${{73} \over {17}}$$
B
$$- {{73} \over {17}}$$
C
$$- {{107} \over {17}}$$
D
$${{107} \over {17}}$$
4
JEE Main 2023 (Online) 25th January Morning Shift
+4
-1

The vector $$\overrightarrow a = - \widehat i + 2\widehat j + \widehat k$$ is rotated through a right angle, passing through the y-axis in its way and the resulting vector is $$\overrightarrow b$$. Then the projection of $$3\overrightarrow a + \sqrt 2 \overrightarrow b$$ on $$\overrightarrow c = 5\widehat i + 4\widehat j + 3\widehat k$$ is :

A
$$\sqrt6$$
B
2$$\sqrt3$$
C
1
D
3$$\sqrt2$$
EXAM MAP
Medical
NEET