1
JEE Main 2024 (Online) 5th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\vec{a}=2 \hat{i}+5 \hat{j}-\hat{k}, \vec{b}=2 \hat{i}-2 \hat{j}+2 \hat{k}$$ and $$\vec{c}$$ be three vectors such that $$(\vec{c}+\hat{i}) \times(\vec{a}+\vec{b}+\hat{i})=\vec{a} \times(\vec{c}+\hat{i})$$. If $$\vec{a} \cdot \vec{c}=-29$$, then $$\vec{c} \cdot(-2 \hat{i}+\hat{j}+\hat{k})$$ is equal to:

A
15
B
10
C
5
D
12
2
JEE Main 2024 (Online) 5th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Consider three vectors $$\vec{a}, \vec{b}, \vec{c}$$. Let $$|\vec{a}|=2,|\vec{b}|=3$$ and $$\vec{a}=\vec{b} \times \vec{c}$$. If $$\alpha \in\left[0, \frac{\pi}{3}\right]$$ is the angle between the vectors $$\vec{b}$$ and $$\vec{c}$$, then the minimum value of $$27|\vec{c}-\vec{a}|^2$$ is equal to:

A
124
B
110
C
121
D
105
3
JEE Main 2024 (Online) 5th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$\mathrm{A}(1,-1,2), \mathrm{B}(5,7,-6), \mathrm{C}(3,4,-10)$$ and $$\mathrm{D}(-1,-4,-2)$$ are the vertices of a quadrilateral ABCD, then its area is :

A
$$24 \sqrt{7}$$
B
$$48 \sqrt{7}$$
C
$$24 \sqrt{29}$$
D
$$12 \sqrt{29}$$
4
JEE Main 2024 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For $$\lambda>0$$, let $$\theta$$ be the angle between the vectors $$\vec{a}=\hat{i}+\lambda \hat{j}-3 \hat{k}$$ and $$\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$$. If the vectors $$\vec{a}+\vec{b}$$ and $$\vec{a}-\vec{b}$$ are mutually perpendicular, then the value of (14 cos $$\theta)^2$$ is equal to

A
25
B
50
C
20
D
40
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12