1
JEE Main 2022 (Online) 25th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k$$ $${a_i} > 0$$, $$i = 1,2,3$$ be a vector which makes equal angles with the coordinate axes OX, OY and OZ. Also, let the projection of $$\overrightarrow a $$ on the vector $$3\widehat i + 4\widehat j$$ be 7. Let $$\overrightarrow b $$ be a vector obtained by rotating $$\overrightarrow a $$ with 90$$^\circ$$. If $$\overrightarrow a $$, $$\overrightarrow b $$ and x-axis are coplanar, then projection of a vector $$\overrightarrow b $$ on $$3\widehat i + 4\widehat j$$ is equal to:

A
$$\sqrt 7 $$
B
$$\sqrt 2 $$
C
2
D
7
2
JEE Main 2022 (Online) 24th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\widehat a$$ and $$\widehat b$$ be two unit vectors such that $$|(\widehat a + \widehat b) + 2(\widehat a \times \widehat b)| = 2$$. If $$\theta$$ $$\in$$ (0, $$\pi$$) is the angle between $$\widehat a$$ and $$\widehat b$$, then among the statements :

(S1) : $$2|\widehat a \times \widehat b| = |\widehat a - \widehat b|$$

(S2) : The projection of $$\widehat a$$ on ($$\widehat a$$ + $$\widehat b$$) is $${1 \over 2}$$

A
Only (S1) is true.
B
Only (S2) is true.
C
Both (S1) and (S2) are true.
D
Both (S1) and (S2) are false.
3
JEE Main 2022 (Online) 24th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\widehat a$$, $$\widehat b$$ be unit vectors. If $$\overrightarrow c $$ be a vector such that the angle between $$\widehat a$$ and $$\overrightarrow c $$ is $${\pi \over {12}}$$, and $$\widehat b = \overrightarrow c + 2\left( {\overrightarrow c \times \widehat a} \right)$$, then $${\left| {6\overrightarrow c } \right|^2}$$ is equal to :

A
$$6\left( {3 - \sqrt 3 } \right)$$
B
$$3 + \sqrt 3 $$
C
$$6\left( {3 + \sqrt 3 } \right)$$
D
$$6\left( {\sqrt 3 + 1} \right)$$
4
JEE Main 2021 (Online) 31st August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
Let $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ three vectors mutually perpendicular to each other and have same magnitude. If a vector $${ \overrightarrow r } $$ satisfies.

$$\overrightarrow a \times \{ (\overrightarrow r - \overrightarrow b ) \times \overrightarrow a \} + \overrightarrow b \times \{ (\overrightarrow r - \overrightarrow c ) \times \overrightarrow b \} + \overrightarrow c \times \{ (\overrightarrow r - \overrightarrow a ) \times \overrightarrow c \} = \overrightarrow 0 $$, then $$\overrightarrow r $$ is equal to :
A
$${1 \over 3}(\overrightarrow a + \overrightarrow b + \overrightarrow c )$$
B
$${1 \over 3}(2\overrightarrow a + \overrightarrow b - \overrightarrow c )$$
C
$${1 \over 2}(\overrightarrow a + \overrightarrow b + \overrightarrow c )$$
D
$${1 \over 2}(\overrightarrow a + \overrightarrow b + 2\overrightarrow c )$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12