1
JEE Main 2018 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\overrightarrow u $$ be a vector coplanar with the vectors $$\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k$$ and $$\overrightarrow b = \widehat j + \widehat k$$. If $$\overrightarrow u $$ is perpendicular to $$\overrightarrow a $$ and $$\overrightarrow u .\overrightarrow b = 24$$, then $${\left| {\overrightarrow u } \right|^2}$$ is equal to
A
336
B
315
C
256
D
84
2
JEE Main 2018 (Online) 15th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the position vectors of the vertices A, B and C of a $$\Delta $$ ABC are respectively $$4\widehat i + 7\widehat j + 8\widehat k,$$    $$2\widehat i + 3\widehat j + 4\widehat k,$$ and $$2\widehat i + 5\widehat j + 7\widehat k,$$ then the position vectors of the point, where the bisector of $$\angle $$A meets BC is :
A
$${1 \over 2}\left( {4\widehat i + 8\widehat j + 11\widehat k} \right)$$
B
$${1 \over 3}\left( {6\widehat i + 11\widehat j + 15\widehat k} \right)$$
C
$${1 \over 3}\left( {6\widehat i + 13\widehat j + 18\widehat k} \right)$$
D
$${1 \over 4}\left( {8\widehat i + 14\widehat j + 19\widehat k} \right)$$
3
JEE Main 2018 (Online) 15th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\overrightarrow a ,\,\,\overrightarrow b ,$$ and $$\overrightarrow C $$ are unit vectors such that $$\overrightarrow a + 2\overrightarrow b + 2\overrightarrow c = \overrightarrow 0 ,$$ then $$\left| {\overrightarrow a \times \overrightarrow c } \right|$$ is equal to :
A
$${{\sqrt {15} } \over 4}$$
B
$${{1} \over {4}}$$
C
$${{15} \over {16}}$$
D
$${{\sqrt {15} } \over 16}$$
4
JEE Main 2017 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the vector $$\overrightarrow b = 3\widehat j + 4\widehat k$$ is written as the sum of a vector $$\overrightarrow {{b_1}} ,$$ paralel to $$\overrightarrow a = \widehat i + \widehat j$$ and a vector $$\overrightarrow {{b_2}} ,$$ perpendicular to $$\overrightarrow a ,$$ then $$\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} $$ is equal to :
A
$$ - 3\widehat i + 3\widehat j - 9\widehat k$$
B
$$6\widehat i - 6\widehat j + {9 \over 2}\widehat k$$
C
$$ - 6\widehat i + 6\widehat j - {9 \over 2}\widehat k$$
D
$$3\widehat i - 3\widehat j + 9\widehat k$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12