1
AIEEE 2006
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
If $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right)$$ where $${\overrightarrow a ,\overrightarrow b }$$ and $${\overrightarrow c }$$ are any three vectors such that $$\overrightarrow a .\overrightarrow b \ne 0,\,\,\overrightarrow b .\overrightarrow c \ne 0$$ then $${\overrightarrow a }$$ and $${\overrightarrow c }$$ are :
A
inclined at an angle of $${\pi \over 3}$$ between them
B
inclined at an angle of $${\pi \over 6}$$ between them
C
perpendicular
D
parallel
2
AIEEE 2006
MCQ (Single Correct Answer)
+4
-1
The values of a, for which the points $$A, B, C$$ with position vectors $$2\widehat i - \widehat j + \widehat k,\,\,\widehat i - 3\widehat j - 5\widehat k$$ and $$a\widehat i - 3\widehat j + \widehat k$$ respectively are the vertices of a right angled triangle with $$C = {\pi \over 2}$$ are :
A
$$2$$ and $$1$$
B
$$-2$$ and $$-1$$
C
$$-2$$ and $$1$$
D
$$2$$ and $$-1$$
3
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Let $$\overrightarrow a \,\, = \,\,\widehat i - \widehat k,\,\,\,\,\,\overrightarrow b \,\,\, = \,\,\,x\widehat i + \widehat j\,\,\, + \,\,\,\left( {1 - x} \right)\widehat k$$ and $$\overrightarrow c \,\, = \,\,y\widehat i + x\widehat j + \left( {1 + x - y} \right)\widehat k.$$ Then $$\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]$$ depends on :
A
only $$y$$
B
only $$x$$
C
both $$x$$ and $$y$$
D
neither $$x$$ nor $$y$$
4
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ are non coplanar vectors and $$\lambda $$ is a real number then

$$\left[ {\lambda \left( {\overrightarrow a + \overrightarrow b } \right)\,\,\,\,\,\,\,\,{\lambda ^2}\overrightarrow b \,\,\,\,\,\,\,\,\lambda \overrightarrow c } \right] = \left[ {\overrightarrow a \,\,\,\,\,\,\,\,\overrightarrow b + \overrightarrow c \,\,\,\,\,\,\,\,\overrightarrow b } \right]$$ for :
A
exactly one value of $$\lambda $$
B
no value of $$\lambda $$
C
exactly three values of $$\lambda $$
D
exactly two values of $$\lambda $$
JEE Main Subjects
EXAM MAP