Let PQR be a triangle. The points A, B and C are on the sides QR, RP and PQ respectively such that
$${{QA} \over {AR}} = {{RB} \over {BP}} = {{PC} \over {CQ}} = {1 \over 2}$$. Then $${{Area(\Delta PQR)} \over {Area(\Delta ABC)}}$$ is equal to :
Let $$\overrightarrow u = \widehat i - \widehat j - 2\widehat k,\overrightarrow v = 2\widehat i + \widehat j - \widehat k,\overrightarrow v .\,\overrightarrow w = 2$$ and $$\overrightarrow v \times \overrightarrow w = \overrightarrow u + \lambda \overrightarrow v $$. Then $$\overrightarrow u .\,\overrightarrow w $$ is equal to :
Let $$\vec{a}, \vec{b}, \vec{c}$$ be three coplanar concurrent vectors such that angles between any two of them is same. If the product of their magnitudes is 14 and $$(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{c})+(\vec{b} \times \vec{c}) \cdot(\vec{c} \times \vec{a})+(\vec{c} \times \vec{a}) \cdot(\vec{a} \times \vec{b})=168$$, then $$|\vec{a}|+|\vec{b}|+|\vec{c}|$$ is equal to :
Let $$\overrightarrow{\mathrm{a}}=3 \hat{i}+\hat{j}$$ and $$\overrightarrow{\mathrm{b}}=\hat{i}+2 \hat{j}+\hat{k}$$. Let $$\overrightarrow{\mathrm{c}}$$ be a vector satisfying $$\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\overrightarrow{\mathrm{b}}+\lambda \overrightarrow{\mathrm{c}}$$. If $$\overrightarrow{\mathrm{b}}$$ and $$\overrightarrow{\mathrm{c}}$$ are non-parallel, then the value of $$\lambda$$ is :