1
JEE Main 2021 (Online) 17th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let O be the origin. Let $$\overrightarrow {OP} = x\widehat i + y\widehat j - \widehat k$$ and $$\overrightarrow {OQ} = - \widehat i + 2\widehat j + 3x\widehat k$$, x, y$$\in$$R, x > 0, be such that $$\left| {\overrightarrow {PQ} } \right| = \sqrt {20} $$ and the vector $$\overrightarrow {OP} $$ is perpendicular $$\overrightarrow {OQ} $$. If $$\overrightarrow {OR} $$ = $$3\widehat i + z\widehat j - 7\widehat k$$, z$$\in$$R, is coplanar with $$\overrightarrow {OP} $$ and $$\overrightarrow {OQ} $$, then the value of x2 + y2 + z2 is equal to :
A
2
B
9
C
7
D
1
2
JEE Main 2021 (Online) 17th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
Let $$\overrightarrow a $$ = 2$$\widehat i$$ $$-$$ 3$$\widehat j$$ + 4$$\widehat k$$ and $$\overrightarrow b $$ = 7$$\widehat i$$ + $$\widehat j$$ $$-$$ 6$$\widehat k$$.

If $$\overrightarrow r $$ $$\times$$ $$\overrightarrow a $$ = $$\overrightarrow r $$ $$\times$$ $$\overrightarrow b $$, $$\overrightarrow r $$ . ($$\widehat i$$ + 2$$\widehat j$$ + $$\widehat k$$) = $$-$$3, then $$\overrightarrow r $$ . (2$$\widehat i$$ $$-$$ 3$$\widehat j$$ + $$\widehat k$$) is equal to :
A
10
B
8
C
13
D
12
3
JEE Main 2021 (Online) 16th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\overrightarrow a $$ = $$\widehat i$$ + 2$$\widehat j$$ $$-$$ 3$$\widehat k$$ and $$\overrightarrow b = 2\widehat i$$ $$-$$ 3$$\widehat j$$ + 5$$\widehat k$$. If $$\overrightarrow r $$ $$\times$$ $$\overrightarrow a $$ = $$\overrightarrow b $$ $$\times$$ $$\overrightarrow r $$,

$$\overrightarrow r $$ . $$\left( {\alpha \widehat i + 2\widehat j + \widehat k} \right)$$ = 3 and $$\overrightarrow r \,.\,\left( {2\widehat i + 5\widehat j - \alpha \widehat k} \right)$$ = $$-$$1, $$\alpha$$ $$\in$$ R, then the

value of $$\alpha$$ + $${\left| {\overrightarrow r } \right|^2}$$ is equal to :
A
13
B
11
C
9
D
15
4
JEE Main 2021 (Online) 16th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let a vector $$\alpha \widehat i + \beta \widehat j$$ be obtained by rotating the vector $$\sqrt 3 \widehat i + \widehat j$$ by an angle 45$$^\circ$$ about the origin in counterclockwise direction in the first quadrant. Then the area of triangle having vertices ($$\alpha$$, $$\beta$$), (0, $$\beta$$) and (0, 0) is equal to :
A
$${1 \over {\sqrt 2 }}$$
B
$${1 \over 2}$$
C
1
D
2$${\sqrt 2 }$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12