1
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The position vectors of the vertices $$\mathrm{A}, \mathrm{B}$$ and $$\mathrm{C}$$ of a triangle are $$2 \hat{i}-3 \hat{j}+3 \hat{k}, 2 \hat{i}+2 \hat{j}+3 \hat{k}$$ and $$-\hat{i}+\hat{j}+3 \hat{k}$$ respectively. Let $$l$$ denotes the length of the angle bisector $$\mathrm{AD}$$ of $$\angle \mathrm{BAC}$$ where $$\mathrm{D}$$ is on the line segment $$\mathrm{BC}$$, then $$2 l^2$$ equals :

A
45
B
50
C
42
D
49
2
JEE Main 2024 (Online) 27th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $\overrightarrow{\mathrm{a}}=\hat{i}+2 \hat{j}+\hat{k}, $
$\overrightarrow{\mathrm{b}}=3(\hat{i}-\hat{j}+\hat{k})$.
Let $\overrightarrow{\mathrm{c}}$ be the vector such that $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}}$ and $\vec{a} \cdot \vec{c}=3$.
Then $\vec{a} \cdot((\vec{c} \times \vec{b})-\vec{b}-\vec{c})$ is equal to :
A
32
B
36
C
24
D
20
3
JEE Main 2023 (Online) 15th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
Let $S$ be the set of all $(\lambda, \mu)$ for which the vectors $\lambda \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}+\mu \hat{k}$ and $3 \hat{i}-4 \hat{j}+5 \hat{k}$, where $\lambda-\mu=5$, are coplanar, then $\sum\limits_{(\lambda, \mu) \in S} 80\left(\lambda^2+\mu^2\right)$ is equal to :
A
2370
B
2130
C
2210
D
2290
4
JEE Main 2023 (Online) 15th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $\mathrm{ABCD}$ be a quadrilateral. If $\mathrm{E}$ and $\mathrm{F}$ are the mid points of the diagonals $\mathrm{AC}$ and $\mathrm{BD}$ respectively and $(\overrightarrow{A B}-\overrightarrow{B C})+(\overrightarrow{A D}-\overrightarrow{D C})=k \overrightarrow{F E}$, then $k$ is equal to :
A
-2
B
4
C
-4
D
2
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12